Lösning 2.1:1b
Aus Förberedande kurs i matematik 1
(Unterschied zwischen Versionen)
| (Der Versionsvergleich bezieht 2 dazwischen liegende Versionen mit ein.) | |||
| Zeile 1: | Zeile 1: | ||
| - | [[Bild:2_1_1b.gif]] | + | {{NAVCONTENT_START}} |
| + | When the factor <math>xy</math> is multiplied by the expression inside the brackets, <math> 1+x+x^2 </math>, the distributive rule gives that all three terms <math>1</math>, <math>x</math> and <math>-x^2</math> are multiplied by <math>xy</math>; | ||
| + | |||
| + | <math> | ||
| + | \qquad | ||
| + | \begin{align} | ||
| + | (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy \\ | ||
| + | &= xy+x^2y-x^3y | ||
| + | \end{align} | ||
| + | </math> | ||
| + | <!-- <center> [[Bild:2_1_1b.gif]] </center> --> | ||
| + | {{NAVCONTENT_STOP}} | ||
Aktuelle Version
When the factor \displaystyle xy is multiplied by the expression inside the brackets, \displaystyle 1+x+x^2 , the distributive rule gives that all three terms \displaystyle 1, \displaystyle x and \displaystyle -x^2 are multiplied by \displaystyle xy;
\displaystyle \qquad \begin{align} (1+x-x^2) &= 1\cdot xy + x\cdot xy -x^2\cdot xy \\ &= xy+x^2y-x^3y \end{align}
