Solution 1.1:2a
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_1_2a.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | By using the rule for differentiation |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>\frac{d}{dx}\,x^{n}=nx^{n-1}</math>}} |
| + | |||
| + | and the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^2-3x+1\bigr)\\[5pt] | ||
| + | &= \frac{d}{dx}\,x^2 - 3\frac{d}{dx}\,x^1 + \frac{d}{dx}\,1\\[5pt] | ||
| + | &= 2x^{2-1} - 3\cdot 1x^{1-1} + 0\\[5pt] | ||
| + | &= 2x-3\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Current revision
By using the rule for differentiation
| \displaystyle \frac{d}{dx}\,x^{n}=nx^{n-1} |
and the fact that the expression can be differentiated term by term and that constant factors can be taken outside the differentiation, we obtain
| \displaystyle \begin{align}
f^{\,\prime}(x) &= \frac{d}{dx}\,\bigl(x^2-3x+1\bigr)\\[5pt] &= \frac{d}{dx}\,x^2 - 3\frac{d}{dx}\,x^1 + \frac{d}{dx}\,1\\[5pt] &= 2x^{2-1} - 3\cdot 1x^{1-1} + 0\\[5pt] &= 2x-3\,\textrm{.} \end{align} |
