Solution 1.2:2b
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:1_2_2b.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | The whole expression consists of two parts: the outer part, "''e'' raised to something", |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>e^{\,\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}}\,,</math>}} |
| + | |||
| + | where "something" is the inner part <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} = x^2+x</math>. | ||
| + | |||
| + | The derivative is calculated according to the chain rule by differentiating <math>e^{\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}}</math> with respect to <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}</math> and then multiplying by the inner derivative <math>\bigl( \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} \bigr)'</math>, i.e. | ||
| + | |||
| + | {{Displayed math||<math>\frac{d}{dx}\,e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}} = e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,x^2+x\,} \bigr)'\,\textrm{.}</math>}} | ||
| + | |||
| + | The inner part is an ordinary polynomial which we differentiate directly, | ||
| + | |||
| + | {{Displayed math||<math>\frac{d}{dx}\,e^{x^2+x} = e^{x^2+x}\cdot (2x+1)\,\textrm{.}</math>}} | ||
Current revision
The whole expression consists of two parts: the outer part, "e raised to something",
| \displaystyle e^{\,\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}}\,, |
where "something" is the inner part \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} = x^2+x.
The derivative is calculated according to the chain rule by differentiating \displaystyle e^{\bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,}} with respect to \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} and then multiplying by the inner derivative \displaystyle \bigl( \bbox[#FFEEAA;,1.5pt]{\,\phantom{x+x}\,} \bigr)', i.e.
| \displaystyle \frac{d}{dx}\,e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}} = e^{\,\bbox[#FFEEAA;,1.5pt]{\,x^2+x\,}}\cdot \bigl( \bbox[#FFEEAA;,1.5pt]{\,x^2+x\,} \bigr)'\,\textrm{.} |
The inner part is an ordinary polynomial which we differentiate directly,
| \displaystyle \frac{d}{dx}\,e^{x^2+x} = e^{x^2+x}\cdot (2x+1)\,\textrm{.} |
