Solution 2.1:3b
From Förberedande kurs i matematik 2
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_3b.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles, |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>\int 2\sin x\cos x\,dx = \int \sin 2x\,dx</math>}} |
| + | |||
| + | we obtain a standard integral where we can write down the primitive functions directly, | ||
| + | |||
| + | {{Displayed math||<math>\int \sin 2x\,dx = -\frac{\cos 2x}{2}+C\,,</math>}} | ||
| + | |||
| + | where <math>C</math> is an arbitrary constant. | ||
Current revision
As the integral stands, it is not so easy to see what the primitive functions are, but if we use the formula for double angles,
| \displaystyle \int 2\sin x\cos x\,dx = \int \sin 2x\,dx |
we obtain a standard integral where we can write down the primitive functions directly,
| \displaystyle \int \sin 2x\,dx = -\frac{\cos 2x}{2}+C\,, |
where \displaystyle C is an arbitrary constant.
