Solution 2.2:2c
From Förberedande kurs i matematik 2
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_2_2c.gif </center> {{NAVCONTENT_STOP}}) |
m |
||
| (4 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | If we focus on the integrand, then the substitution <math>u=3x+1</math> seems suitable, since we then get <math>\sqrt{u}</math> which we can integrate. There is also no risk involved in using a linear substitution such as <math>u=3x+1</math>, because the relation between <math>dx</math> and <math>du</math> will be a constant factor, |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>du = (3x+1)'\,dx = 3\,dx\,,</math>}} |
| + | |||
| + | which does not cause any problems. | ||
| + | |||
| + | We obtain | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \int\limits_0^5 \sqrt{3x+1}\,dx | ||
| + | &= \left\{\begin{align} | ||
| + | u &= 3x+1\\[5pt] | ||
| + | du &= 3\,dx | ||
| + | \end{align}\right\} = \frac{1}{3}\int\limits_1^{16} \sqrt{u}\,du\\[5pt] | ||
| + | &= \frac{1}{3}\int\limits_1^{16} u^{1/2}\,du = \frac{1}{3}\biggl[\ \frac{u^{1/2+1}}{\tfrac{1}{2}+1}\ \biggr]_1^{16}\\[5pt] | ||
| + | &= \frac{1}{3}\Bigl[\ \frac{2}{3}u\sqrt{u}\ \Bigr]_1^{16} = \frac{2}{9}\bigl( 16\sqrt{16}-1\sqrt{1} \bigr)\\[8pt] | ||
| + | &= \frac{2}{9}\bigl( 16\cdot 4-1 \bigr) = \frac{2\cdot 63}{9} = 14\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Current revision
If we focus on the integrand, then the substitution \displaystyle u=3x+1 seems suitable, since we then get \displaystyle \sqrt{u} which we can integrate. There is also no risk involved in using a linear substitution such as \displaystyle u=3x+1, because the relation between \displaystyle dx and \displaystyle du will be a constant factor,
| \displaystyle du = (3x+1)'\,dx = 3\,dx\,, |
which does not cause any problems.
We obtain
| \displaystyle \begin{align}
\int\limits_0^5 \sqrt{3x+1}\,dx &= \left\{\begin{align} u &= 3x+1\\[5pt] du &= 3\,dx \end{align}\right\} = \frac{1}{3}\int\limits_1^{16} \sqrt{u}\,du\\[5pt] &= \frac{1}{3}\int\limits_1^{16} u^{1/2}\,du = \frac{1}{3}\biggl[\ \frac{u^{1/2+1}}{\tfrac{1}{2}+1}\ \biggr]_1^{16}\\[5pt] &= \frac{1}{3}\Bigl[\ \frac{2}{3}u\sqrt{u}\ \Bigr]_1^{16} = \frac{2}{9}\bigl( 16\sqrt{16}-1\sqrt{1} \bigr)\\[8pt] &= \frac{2}{9}\bigl( 16\cdot 4-1 \bigr) = \frac{2\cdot 63}{9} = 14\,\textrm{.} \end{align} |
