Solution 2.2:3f
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | Let's rewrite the integral somewhat, |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>2\sin\sqrt{x}\cdot\frac{1}{2\sqrt{x}}\,\textrm{.}</math>}} |
| + | |||
| + | Here, we see that the factor on the right, <math>1/2\sqrt{x}</math>, is the derivative of the expression <math>\sqrt{x}</math>, which appears in the factor on the left, <math>2\sin \sqrt{x}\,</math>. With the substitution <math>u=\sqrt{x}</math>, the integrand can therefore be written as | ||
| + | |||
| + | {{Displayed math||<math>2\sin u\cdot u'</math>}} | ||
| + | |||
| + | and the integral becomes | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \int \frac{\sin \sqrt{x}}{\sqrt{x}}\,dx | ||
| + | &= \left\{ \begin{align} | ||
| + | u &= \sqrt{x}\\[5pt] | ||
| + | du &= (\sqrt{x}\,)'\,dx = \frac{1}{2\sqrt{x}}\,dx | ||
| + | \end{align}\, \right\}\\[5pt] | ||
| + | &= 2\int \sin u\,du\\[5pt] | ||
| + | &= -2\cos u+C\\[5pt] | ||
| + | &= -2\cos\sqrt{x} + C\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Current revision
Let's rewrite the integral somewhat,
| \displaystyle 2\sin\sqrt{x}\cdot\frac{1}{2\sqrt{x}}\,\textrm{.} |
Here, we see that the factor on the right, \displaystyle 1/2\sqrt{x}, is the derivative of the expression \displaystyle \sqrt{x}, which appears in the factor on the left, \displaystyle 2\sin \sqrt{x}\,. With the substitution \displaystyle u=\sqrt{x}, the integrand can therefore be written as
| \displaystyle 2\sin u\cdot u' |
and the integral becomes
| \displaystyle \begin{align}
\int \frac{\sin \sqrt{x}}{\sqrt{x}}\,dx &= \left\{ \begin{align} u &= \sqrt{x}\\[5pt] du &= (\sqrt{x}\,)'\,dx = \frac{1}{2\sqrt{x}}\,dx \end{align}\, \right\}\\[5pt] &= 2\int \sin u\,du\\[5pt] &= -2\cos u+C\\[5pt] &= -2\cos\sqrt{x} + C\,\textrm{.} \end{align} |
