Solution 3.1:1c
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | Complex numbers satisfy the same rules of arithmetic as ordinary numbers, with the addition that <math>i^2=-1</math>. The distributivity rule gives that |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>\begin{align} |
| + | i(2+3i) | ||
| + | &= i\cdot 2 + i\cdot 3i\\[5pt] | ||
| + | &= 2i+3i^2\\[5pt] | ||
| + | &= 2i+3\cdot (-1)\\[5pt] | ||
| + | &= 2i-3\\[5pt] | ||
| + | &= -3+2i\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Current revision
Complex numbers satisfy the same rules of arithmetic as ordinary numbers, with the addition that \displaystyle i^2=-1. The distributivity rule gives that
| \displaystyle \begin{align}
i(2+3i) &= i\cdot 2 + i\cdot 3i\\[5pt] &= 2i+3i^2\\[5pt] &= 2i+3\cdot (-1)\\[5pt] &= 2i-3\\[5pt] &= -3+2i\,\textrm{.} \end{align} |
