Solution 3.3:2e
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | If we treat the expression <math>w=\frac{z+i}{z-i}</math> as an unknown, we have the equation |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>w^2=-1\,\textrm{.}</math>}} |
| - | {{ | + | |
| - | < | + | We know already that this equation has roots |
| - | {{ | + | |
| + | {{Displayed math||<math>w=\left\{\begin{align} | ||
| + | -i\,,&\\[5pt] | ||
| + | i\,,& | ||
| + | \end{align}\right.</math>}} | ||
| + | |||
| + | so <math>z</math> should satisfy one of the equation's | ||
| + | |||
| + | {{Displayed math||<math>\frac{z+i}{z-i}=-i\quad</math> or <math>\quad\frac{z+i}{z-i}=i\,\textrm{.}</math>}} | ||
| + | |||
| + | We solve these equations one by one. | ||
| + | |||
| + | |||
| + | *<math>(z+i)/(z-i)=-i</math>: | ||
| + | |||
| + | :Multiply both sides by <math>z-i</math>, | ||
| + | |||
| + | {{Displayed math||<math>z+i=-i(z-i)\,\textrm{.}</math>}} | ||
| + | |||
| + | :Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side, | ||
| + | |||
| + | {{Displayed math||<math>z+iz=-1-i\,\textrm{.}</math>}} | ||
| + | |||
| + | :This gives | ||
| + | |||
| + | {{Displayed math||<math>z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.}</math>}} | ||
| + | |||
| + | |||
| + | *<math>(z+i)/(z-i)=i</math>: | ||
| + | |||
| + | :Multiply both sides by <math>z-i</math>, | ||
| + | |||
| + | {{Displayed math||<math>z+i=i(z-i)\,\textrm{.}</math>}} | ||
| + | |||
| + | :Move all the <math>z</math>-terms over to the left-hand side and all the constants to the right-hand side, | ||
| + | |||
| + | {{Displayed math||<math>z-iz=1-i\,\textrm{.}</math>}} | ||
| + | |||
| + | :This gives | ||
| + | |||
| + | {{Displayed math||<math>z = \frac{1-i}{1-i} = 1\,\textrm{.}</math>}} | ||
| + | |||
| + | |||
| + | The solutions are therefore <math>z=-1</math> and <math>z=1\,</math>. | ||
Current revision
If we treat the expression \displaystyle w=\frac{z+i}{z-i} as an unknown, we have the equation
| \displaystyle w^2=-1\,\textrm{.} |
We know already that this equation has roots
| \displaystyle w=\left\{\begin{align}
-i\,,&\\[5pt] i\,,& \end{align}\right. |
so \displaystyle z should satisfy one of the equation's
| \displaystyle \frac{z+i}{z-i}=-i\quad or \displaystyle \quad\frac{z+i}{z-i}=i\,\textrm{.} |
We solve these equations one by one.
- \displaystyle (z+i)/(z-i)=-i:
- Multiply both sides by \displaystyle z-i,
| \displaystyle z+i=-i(z-i)\,\textrm{.} |
- Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
| \displaystyle z+iz=-1-i\,\textrm{.} |
- This gives
| \displaystyle z = \frac{-1-i}{1+i} = \frac{-(1+i)}{1+i} = -1\,\textrm{.} |
- \displaystyle (z+i)/(z-i)=i:
- Multiply both sides by \displaystyle z-i,
| \displaystyle z+i=i(z-i)\,\textrm{.} |
- Move all the \displaystyle z-terms over to the left-hand side and all the constants to the right-hand side,
| \displaystyle z-iz=1-i\,\textrm{.} |
- This gives
| \displaystyle z = \frac{1-i}{1-i} = 1\,\textrm{.} |
The solutions are therefore \displaystyle z=-1 and \displaystyle z=1\,.
