Solution 3.3:5a
From Förberedande kurs i matematik 2
m (Lösning 3.3:5a moved to Solution 3.3:5a: Robot: moved page) |
m |
||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | Even if the equation contains complex numbers as coefficients, we treat is as an ordinary second-degree equation and solve it by completing the square taking the square root. |
| - | < | + | |
| - | {{ | + | We complete the square on the left-hand side, |
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | (z-(1+i))^2-(1+i)^2+2i-1 &= 0\,,\\[5pt] | ||
| + | (z-(1+i))^2-(1+2i+i^2)+2i-1&=0\,,\\[5pt] | ||
| + | (z-(1+i))^2-1-2i+1+2i-1 &= 0\,,\\[5pt] | ||
| + | (z-(1+i))^2-1 &= 0\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
| + | |||
| + | Now, we see that the equation has the solutions | ||
| + | |||
| + | {{Displayed math||<math>z-(1+i) = \pm 1\quad \Leftrightarrow \quad z=\left\{ \begin{align} | ||
| + | &2+i\,,\\ | ||
| + | &i\,\textrm{.} | ||
| + | \end{align}\right.</math>}} | ||
| + | |||
| + | We test the solutions, | ||
| + | |||
| + | <math>\begin{align} | ||
| + | z=2+i:\quad z^2-2(1+i)z+2i-1 | ||
| + | &= (2+i)^2 - 2(1+i)(2+i)+2i-1\\[5pt] | ||
| + | &= 4+4i+i^2-2(2+i+2i+i^2)+2i-1\\[5pt] | ||
| + | &= 4+4i-1-4-6i+2+2i-1\\[5pt] | ||
| + | &= 0\,,\\[10pt] | ||
| + | z={}\rlap{i:}\phantom{2+i:}{}\quad z^2-2(1+i)z+2i-1 | ||
| + | &= i^2-2(1+i)i+2i-1\\[5pt] | ||
| + | &= -1-2(i+i^2)+2i-1\\[5pt] | ||
| + | &= -1-2i+2+2i-1\\[5pt] | ||
| + | &= 0\,\textrm{.} | ||
| + | \end{align}</math> | ||
Current revision
Even if the equation contains complex numbers as coefficients, we treat is as an ordinary second-degree equation and solve it by completing the square taking the square root.
We complete the square on the left-hand side,
| \displaystyle \begin{align}
(z-(1+i))^2-(1+i)^2+2i-1 &= 0\,,\\[5pt] (z-(1+i))^2-(1+2i+i^2)+2i-1&=0\,,\\[5pt] (z-(1+i))^2-1-2i+1+2i-1 &= 0\,,\\[5pt] (z-(1+i))^2-1 &= 0\,\textrm{.} \end{align} |
Now, we see that the equation has the solutions
| \displaystyle z-(1+i) = \pm 1\quad \Leftrightarrow \quad z=\left\{ \begin{align}
&2+i\,,\\ &i\,\textrm{.} \end{align}\right. |
We test the solutions,
\displaystyle \begin{align} z=2+i:\quad z^2-2(1+i)z+2i-1 &= (2+i)^2 - 2(1+i)(2+i)+2i-1\\[5pt] &= 4+4i+i^2-2(2+i+2i+i^2)+2i-1\\[5pt] &= 4+4i-1-4-6i+2+2i-1\\[5pt] &= 0\,,\\[10pt] z={}\rlap{i:}\phantom{2+i:}{}\quad z^2-2(1+i)z+2i-1 &= i^2-2(1+i)i+2i-1\\[5pt] &= -1-2(i+i^2)+2i-1\\[5pt] &= -1-2i+2+2i-1\\[5pt] &= 0\,\textrm{.} \end{align}
