Processing Math: Done
Solution 2.2:2c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 2.2:2c moved to Solution 2.2:2c: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | We can simplify the left-hand side in the equation by expanding the squares using the squaring rule:  | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>\begin{align}  | ||
| + | & \left( x+3 \right)^{2}-\left( x-5 \right)^{2}=\left( x^{2}+2\centerdot 3x+3^{2} \right)-\left( x^{2}-2\centerdot 5x+5^{2} \right) \\   | ||
| + | & =x^{2}+6x+9-x^{2}+10x-25=16x-16 \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | Thus, the equation is  | ||
| + | |||
| + | |||
| + | <math>16x-16=6x+4</math>  | ||
| + | |||
| + | |||
| + | Now, move all "  | ||
| + | <math>x</math>  | ||
| + | "s to the left-hand side (subtract   | ||
| + | <math>6x</math>  | ||
| + | from both sides) and the constants to the right-hand side (add   | ||
| + | <math>16</math>  | ||
| + | to both sides)  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & 16x-6x=4+16 \\   | ||
| + | & 10x=20 \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | Divide both sides by   | ||
| + | <math>10</math>  | ||
| + | to get the answer  | ||
| + | |||
| + | |||
| + | <math>x=\frac{20}{10}=2</math>  | ||
| + | |||
| + | |||
| + | Finally, we check that   | ||
| + | <math>x=2</math>  | ||
| + | satisfies the equation in the exercise:  | ||
| + | |||
| + | LHS =   | ||
| + | <math>\left( 2+3 \right)^{2}-\left( 2-5 \right)^{2}=5^{2}-\left( -3 \right)^{2}=25-9=16</math>  | ||
| + | |||
| + | |||
| + | RHS =   | ||
| + | <math>6\centerdot 2+4=12+4=16</math>  | ||
Revision as of 12:58, 17 September 2008
We can simplify the left-hand side in the equation by expanding the squares using the squaring rule:
x+3
2−
x−5
2=
x2+2
3x+32
−
x2−2
5x+52
=x2+6x+9−x2+10x−25=16x−16 
Thus, the equation is
Now, move all "
Divide both sides by 
Finally, we check that 
LHS = 
2+3
2−
2−5
2=52−
−3
2=25−9=16 
RHS = 
2+4=12+4=16
