Processing Math: Done
Solution 1.1:1d
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 1.1:1d moved to Solution 1.1:1d: Robot: moved page) |
|||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | + | Just as in exercise c, we calculate the innermost bracket | |
:<math>3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5 = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,})-5</math> | :<math>3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5 = 3-(7-\bbox[#FFEEAA;,1.5pt]{\,10\,})-5</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
- | + | and work our way successively outwards, | |
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\firstcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5</math> | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\firstcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\secondcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5\,</math>. | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 3-\secondcbox{#FFEEAA;}{\,(7-10)\,}{(-3)}-5\,</math>. | ||
- | + | All that remains is to combine the terms from left to right | |
- | + | ||
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \firstcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5</math> | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = \firstcbox{#FFEEAA;}{\,3-(-3)\,}{6}-5</math> | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
Line 16: | Line 15: | ||
{{NAVCONTENT_STEP}} | {{NAVCONTENT_STEP}} | ||
:<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 1</math>. | :<math>\phantom{3-(7-\bbox[#FFEEAA;,1.5pt]{\,(4+6)\,})-5}{} = 1</math>. | ||
- | {{ | + | {{NAVCONTENT_STOP}} |
Current revision
Just as in exercise c, we calculate the innermost bracket
3−(7−(4+6))−5=3−(7−10)−5
and work our way successively outwards,
=3−(7−10)−5
=3−(−3)−5 .
All that remains is to combine the terms from left to right
=3−(−3)−5
=3+3−5
=6−5
=1 .