Processing Math: Done
Solution 2.2:2b
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | First, we multiply both sides in the equation by <math>4\cdot 7=28</math>, so that we get rid of the denominators in the equation, |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>\begin{align} |
| - | {{ | + | & 4\cdot{}\rlap{/}7\cdot\frac{8x+3}{\rlap{/}7} - \rlap{/}4\cdot 7\cdot\frac{5x-7}{\rlap{/}4} = 4\cdot 7\cdot 2\\[5pt] |
| - | < | + | &\qquad\Leftrightarrow\quad 4\cdot (8x+3) - 7\cdot (5x-7) = 56\,\textrm{.} |
| - | + | \end{align}</math>}} | |
| + | |||
| + | We can simplify the left-hand side to <math>4\cdot (8x+3) - 7\cdot (5x-7) = 32x+12-35x+49 = -3x+61\,</math>. Hence, the equation is | ||
| + | |||
| + | {{Displayed math||<math>-3x+61=56\,\textrm{.}</math>}} | ||
| + | |||
| + | We solve this equation by subtracting 61 from both sides and then dividing by -3, | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | -3x+61-61&=56-61\,,\\[5pt] | ||
| + | -3x&=-5\,,\\[5pt] | ||
| + | \frac{-3x}{-3}&=\frac{-5}{-3}\,,\\[5pt] | ||
| + | x&=\frac{5}{3}\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
| + | |||
| + | The answer is <math>x={5}/{3}\,</math>. | ||
| + | |||
| + | As the final part of the solution, check the answer by substituting <math>x={5}/{3}</math> into the original equation | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \text{LHS} | ||
| + | &= \frac{8\cdot\frac{5}{3}+3}{7}-\frac{5\cdot\frac{5}{3}-7}{4} | ||
| + | = \frac{\bigl(8\cdot\frac{5}{3}+3\bigr)\cdot 3}{7\cdot 3} - \frac{\bigl( 5\cdot \frac{5}{3}-7\bigr)\cdot 3}{4\cdot 3}\\[5pt] | ||
| + | &= \frac{8\cdot 5+3\cdot 3}{7\cdot 3}-\frac{5\cdot 5-7\cdot 3}{4\cdot 3} | ||
| + | = \frac{40+9}{21}-\frac{25-21}{12}\\[5pt] | ||
| + | &= \frac{49}{21}-\frac{4}{12} | ||
| + | = \frac{7\cdot 7}{3\cdot 7} - \frac{2\cdot 2}{2\cdot 2\cdot 3} | ||
| + | = \frac{7}{3}-\frac{1}{3} | ||
| + | = \frac{7-1}{3} | ||
| + | = \frac{6}{3} = 2 = \text{RHS.} | ||
| + | \end{align}</math>}} | ||
Current revision
First, we multiply both sides in the equation by
7=28
![]() 7![]() 78x+3− 4 7![]() 45x−7=4 7 2 4 (8x+3)−7 (5x−7)=56. |
We can simplify the left-hand side to
(8x+3)−7
(5x−7)=32x+12−35x+49=−3x+61
We solve this equation by subtracting 61 from both sides and then dividing by -3,
=−5 =−3−5 =35. |
The answer is
3
As the final part of the solution, check the answer by substituting
3
35+3−45 35−7=7 3 8 35+3![]() 3−4 3 5 35−7![]() 3=7 38 5+3 3−4 35 5−7 3=2140+9−1225−21=2149−412=3 77 7−2 22 2 3=37−31=37−1=36=2=RHS. |




