Processing Math: Done
Solution 2.2:2b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | First, we multiply both sides in the equation by   | + | First, we multiply both sides in the equation by <math>4\cdot 7=28</math>, so that we get rid of the denominators in the equation,  | 
| - | <math>4\  | + | |
| + | {{Displayed math||<math>\begin{align}  | ||
| + | & 4\cdot{}\rlap{/}7\cdot\frac{8x+3}{\rlap{/}7} - \rlap{/}4\cdot 7\cdot\frac{5x-7}{\rlap{/}4} = 4\cdot 7\cdot 2\\[5pt]   | ||
| + | &\qquad\Leftrightarrow\quad 4\cdot (8x+3) - 7\cdot (5x-7) = 56\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
| - | <math>  | + | We can simplify the left-hand side to <math>4\cdot (8x+3) - 7\cdot (5x-7) = 32x+12-35x+49 = -3x+61\,</math>. Hence, the equation is  | 
| - | + | ||
| - | + | ||
| - | \  | + | |
| + | {{Displayed math||<math>-3x+61=56\,\textrm{.}</math>}}  | ||
| - | We   | + | We solve this equation by subtracting 61 from both sides and then dividing by -3,  | 
| + | {{Displayed math||<math>\begin{align}  | ||
| + | -3x+61-61&=56-61\,,\\[5pt]   | ||
| + | -3x&=-5\,,\\[5pt]  | ||
| + | \frac{-3x}{-3}&=\frac{-5}{-3}\,,\\[5pt]   | ||
| + | x&=\frac{5}{3}\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
| - | <math>  | + | The answer is <math>x={5}/{3}\,</math>.  | 
| + | As the final part of the solution, check the answer by substituting <math>x={5}/{3}</math> into the original equation  | ||
| - | + | {{Displayed math||<math>\begin{align}  | |
| - | + | \text{LHS}  | |
| - | + | &= \frac{8\cdot\frac{5}{3}+3}{7}-\frac{5\cdot\frac{5}{3}-7}{4}  | |
| - | + | = \frac{\bigl(8\cdot\frac{5}{3}+3\bigr)\cdot 3}{7\cdot 3} - \frac{\bigl( 5\cdot \frac{5}{3}-7\bigr)\cdot 3}{4\cdot 3}\\[5pt]  | |
| - | + | &= \frac{8\cdot 5+3\cdot 3}{7\cdot 3}-\frac{5\cdot 5-7\cdot 3}{4\cdot 3}  | |
| - | + | = \frac{40+9}{21}-\frac{25-21}{12}\\[5pt]  | |
| - | + | &= \frac{49}{21}-\frac{4}{12}  | |
| - | + | = \frac{7\cdot 7}{3\cdot 7} - \frac{2\cdot 2}{2\cdot 2\cdot 3}  | |
| - | + | = \frac{7}{3}-\frac{1}{3}  | |
| - | + | = \frac{7-1}{3}  | |
| - | + | = \frac{6}{3} = 2 = \text{RHS.}  | |
| - | + | \end{align}</math>}}  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>\begin{align}  | + | |
| - | + | ||
| - | + | ||
| - | & =\frac{8\  | + | |
| - | + | ||
| - | & =\frac{49}{21}-\frac{4}{12}=\frac{7\  | + | |
| - | + | ||
| - | + | ||
| - | \end{align}</math>  | + | |
Current revision
First, we multiply both sides in the equation by 
7=28
![]()  7![]()  78x+3− 4 7![]()  45x−7=4 7 2 4 (8x+3)−7 (5x−7)=56. | 
We can simplify the left-hand side to 
(8x+3)−7
(5x−7)=32x+12−35x+49=−3x+61
We solve this equation by subtracting 61 from both sides and then dividing by -3,
 =−5 =−3−5 =35. | 
The answer is 
3
As the final part of the solution, check the answer by substituting 
3
 35+3−45 35−7=7 3 8 35+3![]()  3−4 3 5 35−7![]()  3=7 38 5+3 3−4 35 5−7 3=2140+9−1225−21=2149−412=3 77 7−2 22 2 3=37−31=37−1=36=2=RHS. | 




