Processing Math: Done
Solution 2.2:2c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | We can simplify the left-hand side in the equation by expanding the squares using the squaring rule  | + | We can simplify the left-hand side in the equation by expanding the squares using the squaring rule  | 
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | (x+3)^{2}-(x-5)^{2}  | ||
| + | &= (x^{2}+2\cdot 3x+3^{2})-(x^{2}-2\cdot 5x+5^{2})\\[5pt]   | ||
| + | &= x^{2}+6x+9-x^{2}+10x-25\\[5pt]  | ||
| + | &=16x-16\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
Thus, the equation is  | Thus, the equation is  | ||
| + | {{Displayed math||<math>16x-16=6x+4\,\textrm{.}</math>}}  | ||
| - | + | Now, move all ''x'''s to the left-hand side (subtract 6''x'' from both sides) and the constants to the right-hand side (add 16 to both sides)  | |
| - | + | ||
| - | + | ||
| - | Now, move all   | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | from both sides) and the constants to the right-hand side (add   | + | |
| - | + | ||
| - | to both sides)  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | 16x-6x&=4+16\,,\\[5pt]   | ||
| + | 10x&=20\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
| - | + | Divide both sides by 10 to get the answer  | |
| - | + | ||
| - | + | ||
| - | + | {{Displayed math||<math>x=\frac{20}{10}=2\,\textrm{.}</math>}}  | |
| - | <math>\  | + | |
| + | Finally, we check that <math>x=2</math> satisfies the equation in the exercise  | ||
| - | + | {{Displayed math||<math>\begin{align}  | |
| - | <math>6\  | + | \text{LHS} &= (2+3)^{2}-(2-5)^{2} = 5^{2}-(-3)^{2} = 25-9 = 16,\\[5pt]  | 
| + | \text{RHS} &= 6\cdot 2+4 = 12+4 = 16\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
Current revision
We can simplify the left-hand side in the equation by expanding the squares using the squaring rule
 3x+32)−(x2−2 5x+52)=x2+6x+9−x2+10x−25=16x−16. | 
Thus, the equation is
Now, move all x's to the left-hand side (subtract 6x from both sides) and the constants to the right-hand side (add 16 to both sides)
 =20. | 
Divide both sides by 10 to get the answer
Finally, we check that 
 =6 2+4=12+4=16. | 


