Processing Math: Done
Solution 2.2:3c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Robot: Automated text replacement  (-[[Bild: +[[Image:))  | 
				m   | 
			||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | Start by rewriting the terms on the left-hand side as one term having a common denominator  | 
| - | + | ||
| - | {{  | + | {{Displayed math||<math>\begin{align}  | 
| - | {{  | + | \frac{1}{x-1}-\frac{1}{x+1} &= \frac{1}{x-1}\cdot\frac{x+1}{x+1} - \frac{1}{x+1}\cdot\frac{x-1}{x-1}\\[5pt]   | 
| - | <  | + | &= \frac{x+1}{(x-1)(x+1)} - \frac{x-1}{(x-1)(x+1)}\\[5pt]  | 
| - | {{  | + | &= \frac{(x+1)-(x-1)}{(x-1)(x+1)}\\[5pt]  | 
| - | {{  | + | &= \frac{2}{(x-1)(x+1)}\,\textrm{.}   | 
| - | <  | + | \end{align}</math>}}  | 
| - | + | ||
| + | If we also write <math>3x-3=3(x-1)</math>, the equation can be rewritten as  | ||
| + | |||
| + | {{Displayed math||<math>\frac{2}{(x-1)(x+1)}\bigl(x^{2}+\tfrac{1}{2}\bigr) = \frac{6x-1}{3(x-1)}\,\textrm{.}</math>}}  | ||
| + | |||
| + | Because <math>x=1</math> cannot be a solution to the equation, the factor   | ||
| + | <math>x-1</math> can be removed from the denominator of both sides (i.e. actually, we multiply both sides by <math>x-1</math> and then eliminate it)  | ||
| + | |||
| + | {{Displayed math||<math>\frac{2}{x+1}\bigl(x^{2}+\tfrac{1}{2}\bigr) = \frac{6x-1}{3}\,\textrm{.}</math>}}  | ||
| + | |||
| + | Then, both sides are multiplied by 3 and <math>x+1</math>, so that we get an equation without any denominators  | ||
| + | |||
| + | {{Displayed math||<math>6\bigl(x^{2}+\tfrac{1}{2}\bigr) = (6x-1)(x+1)\,\textrm{.}</math>}}  | ||
| + | |||
| + | Expanding both sides  | ||
| + | |||
| + | {{Displayed math||<math>6x^{2}+3=6x^{2}+5x-1\,\textrm{.}</math>}}  | ||
| + | |||
| + | The ''x''² terms cancel each other out and we obtain a first-order equation,  | ||
| + | |||
| + | {{Displayed math||<math>3=5x-1\,,</math>}}  | ||
| + | |||
| + | which has the solution   | ||
| + | |||
| + | {{Displayed math||<math>x=\frac{4}{5}\,\textrm{.}</math>}}  | ||
| + | |||
| + | We check whether we have calculated correctly by substituting <math>x=4/5</math> into the original equation,  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \text{LHS} &= \biggl(\frac{1}{\frac{4}{5}-1}-\frac{1}{\frac{4}{5}+1}\biggr)\bigl( \bigl(\tfrac{4}{5}\bigr)^{2}+\tfrac{1}{2}\bigr)  | ||
| + | = \biggl(\frac{1}{-\frac{1}{5}}-\frac{1}{\frac{9}{5}}\biggr)\bigl(  | ||
| + | \tfrac{16}{25}+\tfrac{1}{2}\bigr)\\[5pt]  | ||
| + | &= \bigl(-5-\tfrac{5}{9}\bigr)\cdot\frac{16\cdot 2+25}{2\cdot 25}  | ||
| + | = -\frac{50}{9}\cdot\frac{57}{50}  | ||
| + | = -\frac{57}{9}  | ||
| + | = -\frac{19}{3}\,,\\[15pt]   | ||
| + | \text{RHS} &= \frac{6\cdot\frac{4}{5}-1}{3\cdot\frac{4}{5}-3}  | ||
| + | = \frac{\frac{24}{5}-\frac{5}{5}}{\frac{12}{5}-\frac{15}{5}}  | ||
| + | = \frac{\frac{1}{5}\cdot (24-5)}{\frac{1}{5}\cdot (12-15)}  | ||
| + | = \frac{19}{-3}  | ||
| + | = -\frac{19}{3}\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
Current revision
Start by rewriting the terms on the left-hand side as one term having a common denominator
 x+1x+1−1x+1 x−1x−1=x+1(x−1)(x+1)−x−1(x−1)(x+1)=(x−1)(x+1)(x+1)−(x−1)=2(x−1)(x+1). | 
If we also write 
 x2+21 =6x−13(x−1).  | 
Because 
 x2+21 =36x−1.  | 
Then, both sides are multiplied by 3 and 
 x2+21 =(6x−1)(x+1).  | 
Expanding both sides
The x² terms cancel each other out and we obtain a first-order equation,
![]()  | 
which has the solution
We check whether we have calculated correctly by substituting 
5
 154−1−154+1![]() ![]()  54 2+21 = 1−51−159![]()  2516+21 = −5−95![]()  2 2516 2+25=−950 5057=−957=−319 =3 54−36 54−1=524−55512−515=51 (24−5)51 (12−15)=19−3=−319. | 






