Processing Math: Done
Solution 4.3:2b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.3:2b moved to Solution 4.3:2b: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | If we write the angle   | 
| + | <math>\frac{7\pi }{5}</math>  | ||
| + | as  | ||
| + | |||
| + | |||
| + | <math>\frac{7\pi }{5}=\frac{5\pi +2\pi }{5}=\pi +\frac{2\pi }{5}</math>  | ||
| + | |||
| + | |||
| + | we see that   | ||
| + | <math>\frac{7\pi }{5}</math>  | ||
| + | is an angle in the third quadrant.  | ||
| + | |||
<center> [[Image:4_3_2_b.gif]] </center>  | <center> [[Image:4_3_2_b.gif]] </center>  | ||
| - | <  | + | |
| - | {{  | + | the line   | 
| + | <math>x=\cos \frac{7\pi }{5}</math>  | ||
| + | |||
| + | The angle between   | ||
| + | <math>0</math>  | ||
| + | and   | ||
| + | <math>\pi </math>  | ||
| + | which has the same x-coordinate as the angle  | ||
| + | <math>{7\pi }/{5}\;</math>, and hence the same cosine value, is the reflection of the angle   | ||
| + | <math>{7\pi }/{5}\;</math>  | ||
| + | in the   | ||
| + | <math>x</math>  | ||
| + | -axis, i.e.    | ||
| + | <math>v=\pi -\frac{2\pi }{5}=\frac{3\pi }{5}</math>.  | ||
Revision as of 10:34, 29 September 2008
If we write the angle 

=55
+2
=
+52
we see that 

 
the line 

The angle between 


5
5
−52
=53
