Processing Math: Done
Solution 4.3:6c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Robot: Automated text replacement  (-[[Bild: +[[Image:))  | 
				m   | 
			||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | + | Because the angle <math>v</math> satisfies <math>\pi \le v\le 3\pi/2\,</math>, <math>v</math> belongs to the third quadrant in the unit circle. Furthermore, <math>\tan v = 3</math> gives that the line which corresponds to the angle   | |
| - | <  | + | <math>v</math> has slope 3.  | 
| - | + | ||
| - | + | ||
| - | <  | + | |
| - | + | ||
[[Image:4_3_6_c1.gif|center]]  | [[Image:4_3_6_c1.gif|center]]  | ||
| + | |||
| + | In the third quadrant, we can introduce a right-angled triangle in which the hypotenuse is 1 and the sides have a 3:1 ratio.  | ||
| + | |||
[[Image:4_3_6_c2.gif|center]]  | [[Image:4_3_6_c2.gif|center]]  | ||
| + | |||
| + | If we now use the Pythagorean theorem on the triangle, we see that the horizontal side ''a'' satisfies  | ||
| + | |||
| + | {{Displayed math||<math>a^2 + (3a)^2 = 1^2</math>}}  | ||
| + | |||
| + | which gives us that <math>10a^{2}=1</math> i.e. <math>a = 1/\!\sqrt{10}\,\textrm{.}</math>  | ||
| + | |||
| + | Thus, the angle ''v'''s ''x''-coordinate is <math>-1/\!\sqrt{10}</math> and ''y''-coordinate is <math>-3/\!\sqrt{10}</math>, i.e.  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \cos v &= -\frac{1}{\sqrt{10}}\,,\\[5pt]  | ||
| + | \sin v &= -\frac{3}{\sqrt{10}}\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
Current revision
Because the angle 
v
3
2
In the third quadrant, we can introduce a right-angled triangle in which the hypotenuse is 1 and the sides have a 3:1 ratio.
If we now use the Pythagorean theorem on the triangle, we see that the horizontal side a satisfies
which gives us that 
10. 
Thus, the angle v's x-coordinate is 
10 
10 
 10 =−3 10. | 



