Processing Math: Done
Solution 4.3:8a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.3:8a moved to Solution 4.3:8a: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | |
| - | <  | + | |
| - | {{  | + | We rewrite   | 
| + | <math>\text{tan }v</math>  | ||
| + | on the left-hand side as   | ||
| + | <math>\frac{\sin v}{\cos v}</math>, so that  | ||
| + | |||
| + | |||
| + | <math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}</math>  | ||
| + | |||
| + | |||
| + | If we then use the Pythagorean identity  | ||
| + | |||
| + | |||
| + | <math>\cos ^{2}v+\sin ^{2}v=1</math>  | ||
| + | |||
| + | |||
| + | and rewrite   | ||
| + | <math>\text{cos}^{\text{2}}v</math>  | ||
| + | in the denominator as   | ||
| + | <math>\text{1}-\text{sin}^{\text{2}}v\text{ }</math>, we get what we are looking for on the right-hand side. The whole calculation is  | ||
| + | |||
| + | |||
| + | <math>\tan ^{2}v=\frac{\sin ^{2}v}{\cos ^{2}v}=\frac{\sin ^{2}v}{1-\sin ^{2}v}</math>  | ||
Revision as of 10:37, 30 September 2008
We rewrite 
If we then use the Pythagorean identity
and rewrite 
