Processing Math: Done
Solution 2.1:2b
From Förberedande kurs i matematik 1
(Difference between revisions)
(Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_2b.gif </center> {{NAVCONTENT_STOP}}) |
|||
| Line 1: | Line 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
| - | <center> [[Bild:2_1_2b.gif]] </center> | + | <!--center> [[Bild:2_1_2b.gif]] </center--> |
| + | We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket | ||
| + | |||
| + | <math> | ||
| + | \qquad | ||
| + | \begin{align} | ||
| + | (1-5x)(1+15x) &= 1\cdot 1+1\cdot 15x-5x\cdot 1-5x \cdot 15x\\ | ||
| + | &=1+15x-5x-75x^2 | ||
| + | \end{align} | ||
| + | </math> | ||
| + | |||
| + | As for the second expression, we can use the conjugate rule <math>(a-b)(a+b)=a^2-b^2,</math> where <math>a=2</math> and <math> b=5x.</math> | ||
| + | |||
| + | <math> | ||
| + | \qquad | ||
| + | \begin{align} | ||
| + | 3(2-5x)(2+5x) &= 3\big( 2^2-(5x)^2\big)\\ | ||
| + | &=3(4-25x^2)\\ | ||
| + | &=12-75x^2 | ||
| + | \end{align} | ||
| + | </math> | ||
| + | |||
| + | All together, we obtain | ||
| + | |||
| + | <math> \qquad (1-5x)(1+15x)-3(2-5x)(2+5x) </math> | ||
| + | |||
| + | <math> | ||
| + | \qquad | ||
| + | \begin{align} | ||
| + | \phantom{3(2-5x)(2+5x)} &= (1+10x-75x^2)-(12-75x^2)\\ | ||
| + | &= 1+10x-75x^2-12+75x^2\\ | ||
| + | &= 1-12+10x-75x^2+75x^2\\ | ||
| + | &=-11+10x | ||
| + | \end{align} | ||
| + | </math> | ||
| + | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} | ||
Revision as of 10:58, 13 August 2008
We expand the first product of bracketed terms by multiplying each term inside the first bracket by each term from the second bracket
1+1
15x−5x
1−5x
15x=1+15x−5x−75x2
As for the second expression, we can use the conjugate rule 

22−(5x)2
=3(4−25x2)=12−75x2
All together, we obtain
