Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Solution 4.1:1

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m (Lösning 4.1:1 moved to Solution 4.1:1: Robot: moved page)
Line 1: Line 1:
-
{{NAVCONTENT_START}}
+
The only thing we really need to remember is that one turn corresponds to
-
<center> [[Image:4_1_1.gif]] </center>
+
<math>\text{36}0^{\text{o}}</math>
-
{{NAVCONTENT_STOP}}
+
or
 +
<math>\text{2}\pi </math>
 +
radians. Then we get:
 +
 
 +
a)
 +
<math>\frac{1}{4}</math>
 +
turn
 +
<math>=\frac{1}{4}\centerdot 360^{\circ }=90^{\circ }</math>
 +
and
 +
 +
<math>\frac{1}{4}</math>
 +
turn
 +
<math>=\frac{1}{4}\centerdot 2\pi </math>
 +
radians
 +
<math>=\frac{\pi }{2}</math>
 +
radians,
 +
 +
 
 +
b)
 +
<math>\frac{3}{8}</math>
 +
turn
 +
<math>=\frac{3}{8}\centerdot 360^{\circ }=135^{\circ }</math>
 +
and
 +
 +
<math>\frac{3}{8}</math>
 +
turn
 +
<math>=\frac{3}{8}\centerdot 2\pi </math>
 +
radians
 +
<math>=\frac{3\pi }{4}</math>
 +
radians,
 +
 
 +
 +
 
 +
c)
 +
<math>-\frac{2}{3}</math>
 +
turn
 +
<math>=-\frac{2}{3}\centerdot 360^{\circ }=-240^{\circ }</math>
 +
and
 +
 +
<math>-\frac{2}{3}</math>
 +
turn
 +
<math>=-\frac{2}{3}\centerdot 2\pi </math>
 +
radians
 +
<math>=-\frac{4\pi }{3}</math>
 +
radians,
 +
 
 +
 
 +
d)
 +
<math>\frac{97}{12}</math>
 +
turn
 +
<math>=\frac{97}{12}\centerdot 360^{\circ }=2910^{\circ }</math>
 +
and
 +
 +
<math>\frac{97}{12}</math>
 +
turn
 +
<math>=\frac{97}{12}\centerdot 2\pi </math>
 +
radians
 +
<math>=\frac{97\pi }{6}</math>
 +
radians,

Revision as of 12:31, 26 September 2008

The only thing we really need to remember is that one turn corresponds to 360o or 2 radians. Then we get:

a) 41 turn =41360=90 and

41 turn =412 radians =2 radians,


b) 83 turn =83360=135 and

83 turn =832 radians =43 radians,


c) 32 turn =32360=240 and

32 turn =322 radians =34 radians,


d) 1297 turn =1297360=2910 and

1297 turn =12972 radians =697 radians,