Processing Math: Done
Solution 4.3:7b
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 4.3:7b moved to Solution 4.3:7b: Robot: moved page) |
|||
Line 1: | Line 1: | ||
- | {{ | + | Using the addition formula, we rewrite |
- | < | + | <math>\text{sin}\left( x+y \right)</math> |
- | {{ | + | as |
+ | |||
+ | |||
+ | <math>\text{sin}\left( x+y \right)=\sin x\centerdot \cos y+\cos x\centerdot \sin y</math> | ||
+ | |||
+ | |||
+ | If we use the same solution procedure as in exercise a, we use the Pythagorean identity | ||
+ | |||
+ | <math>\cos ^{2}v+\sin ^{2}v=1</math> | ||
+ | to express the unknown factors | ||
+ | <math>x\text{ }</math> | ||
+ | and | ||
+ | <math>y\text{ }</math> | ||
+ | in terms of | ||
+ | <math>\text{cos }x\text{ }</math> | ||
+ | and | ||
+ | <math>\text{cos }y</math>, | ||
+ | |||
+ | <math>\begin{align} | ||
+ | & \sin x=\pm \sqrt{1-\text{cos}^{2}x}=\pm \sqrt{1-\left( \frac{2}{5} \right)^{2}}=\pm \sqrt{1-\frac{4}{25}}=\pm \frac{\sqrt{21}}{5}, \\ | ||
+ | & \sin y=\pm \sqrt{1-\text{cos}^{2}y}=\pm \sqrt{1-\left( \frac{3}{5} \right)^{2}}=\pm \sqrt{1-\frac{9}{25}}=\pm \frac{4}{5} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The angles | ||
+ | <math>x\text{ }</math> | ||
+ | and | ||
+ | <math>y\text{ }</math> | ||
+ | lie in the first quadrant and both | ||
+ | <math>\text{sin }x\text{ }</math> | ||
+ | and | ||
+ | <math>\text{sin }y\text{ }</math> | ||
+ | are therefore positive, i.e. | ||
+ | |||
+ | |||
+ | <math>\sin x=\frac{\sqrt{21}}{5}</math> | ||
+ | and | ||
+ | <math>\sin y=\frac{4}{5}</math> | ||
+ | |||
+ | |||
+ | Thus, the answer is | ||
+ | |||
+ | |||
+ | <math>\text{sin}\left( x+y \right)=\frac{\sqrt{21}}{5}\centerdot \frac{3}{5}+\frac{2}{5}\centerdot \frac{4}{5}=\frac{3\sqrt{21}+8}{25}</math> |
Revision as of 10:29, 30 September 2008
Using the addition formula, we rewrite
x+y
x+y
=sinx
cosy+cosx
siny
If we use the same solution procedure as in exercise a, we use the Pythagorean identity
1−cos2x=
1−
52
2=
1−425=
5
21
siny=
1−cos2y=
1−
53
2=
1−925=
54
The angles
21
Thus, the answer is
x+y
=5
21
53+52
54=253
21+8