5.1 Exercises
From Förberedande kurs i matematik 1
(Difference between revisions)
(New page: __NOTOC__ {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | style="border-bottom:1px solid #000" width="5px" | {{Not selected tab|[[5.1 Writing formulas in Te...) |
|||
Line 9: | Line 9: | ||
===Exercise 5.1:1=== | ===Exercise 5.1:1=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | Write the formulas in | + | Write the following formulas in LaTeX . |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="50%" | <math> | + | |width="50%" | <math>2-3+4</math> |
|b) | |b) | ||
- | |width="50%" | <math> | + | |width="50%" | <math>-1+0.3</math> |
|- | |- | ||
|c) | |c) | ||
- | || <math> | + | || <math>-5-(-3)=-5+3</math> |
|d) | |d) | ||
- | || <math> | + | || <math>5/2+1 > 5/(2+1)</math> |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 5.1:1}} | </div>{{#NAVCONTENT:Answer|Answer 5.1:1}} | ||
Line 26: | Line 26: | ||
===Exercise 5.1:2=== | ===Exercise 5.1:2=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | Write the formulas in | + | Write the following formulas in LaTeX. |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="50%" | <math>\ | + | |width="50%" | <math>3\times 4\pm 4</math> |
|b) | |b) | ||
- | |width="50%" | <math> | + | |width="50%" | <math>4x^2-\sqrt{x}</math> |
|- | |- | ||
|c) | |c) | ||
- | || <math>\ | + | || <math>4\times 3^n\ge n^3</math> |
- | + | ||
- | + | ||
- | + | ||
|d) | |d) | ||
- | || <math> | + | || <math>3-(5-2)=-(-3+5-2)</math> |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 5.1:2}} | </div>{{#NAVCONTENT:Answer|Answer 5.1:2}} | ||
Line 45: | Line 42: | ||
===Exercise 5.1:3=== | ===Exercise 5.1:3=== | ||
<div class="ovning"> | <div class="ovning"> | ||
- | Write the formulas in | + | Write the following formulas in LaTeX |
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="50%" | <math> | + | |width="50%" | <math>\dfrac{x+1}{x^2-1} = \dfrac{1}{x-1}</math> |
|b) | |b) | ||
- | |width="50%" | <math>\left( | + | |width="50%" | <math>\left(\dfrac{5}{x}-1\right)(1-x)</math> |
|- | |- | ||
|c) | |c) | ||
- | || <math>\ | + | || <math>\dfrac{\frac{1}{2}}{\frac{1}{3}+\frac{1}{4}}</math> |
|d) | |d) | ||
- | || <math>\ | + | || <math>\dfrac{1}{1+\dfrac{1}{1+x}}</math> |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 5.1:3}} | </div>{{#NAVCONTENT:Answer|Answer 5.1:3}} | ||
+ | |||
+ | ===Exercise 5.1:4=== | ||
+ | <div class="ovning"> | ||
+ | Write the following formulas in LaTeX | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="50%" | <math>\sin^2 x+\cos x</math> | ||
+ | |b) | ||
+ | |width="50%" | <math>\cos v=\cos\dfrac{3\pi}{2}</math> | ||
+ | |- | ||
+ | |c) | ||
+ | || <math>\cot 2x=\dfrac{1}{\tan 2x}</math> | ||
+ | |d) | ||
+ | || <math>\tan\dfrac{u}{2}=\dfrac{\sin u}{1+\cos u}</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Answer 5.1:4}} | ||
+ | |||
+ | ===Exercise 5.1:5=== | ||
+ | <div class="ovning"> | ||
+ | Write the following formulas in LaTeX | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="50%" | <math>\sqrt{4+x^2}</math> | ||
+ | |b) | ||
+ | |width="50%" | <math>\sqrt[n]{x+y}\ne\sqrt[n]{x}+\sqrt[n]{y}</math> | ||
+ | |- | ||
+ | |c) | ||
+ | || <math>\sqrt{\sqrt{3}} = \sqrt[4]{3}</math> | ||
+ | |d) | ||
+ | || <math>\left(\sqrt[4]{3}\right)^3\sqrt[3]{2+\sqrt{2}}</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Answer 5.1:5}} | ||
+ | |||
+ | ===Exercise 5.1:6=== | ||
+ | <div class="ovning"> | ||
+ | Write the following formulas in LaTeX | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="50%" | <math>\ln(4\times 3)=\ln 4+\ln 3</math> | ||
+ | |b) | ||
+ | |width="50%" | <math>\ln(4-3)\ne \ln 4-\ln 3</math> | ||
+ | |- | ||
+ | |c) | ||
+ | || <math>\log_{2}4 = \dfrac{\ln 4}{\ln 2}</math> | ||
+ | |d) | ||
+ | || <math>2^{\log_{2}4} = 4</math> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Answer 5.1:6}} | ||
+ | |||
+ | ===Exercise 5.1:7=== | ||
+ | <div class="ovning"> | ||
+ | Correct the following LaTeX maths code. | ||
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) | ||
+ | |width="100%" | <tt>4^{\frac{3}{4}}(1-(3-4)</tt> | ||
+ | |- | ||
+ | |b) | ||
+ | |width="100%" | <tt>2*sqrt(a+b)</tt> | ||
+ | |- | ||
+ | |c) | ||
+ | |width="100%" | <tt>cotx = \dfrac{1}{2}Sin 20^{o}</tt> | ||
+ | |} | ||
+ | </div>{{#NAVCONTENT:Answer|Answer 5.1:7}} |
Revision as of 14:08, 28 January 2009
Theory | Exercises |
Exercise 5.1:1
Write the following formulas in LaTeX .
a) | \displaystyle 2-3+4 | b) | \displaystyle -1+0.3 |
c) | \displaystyle -5-(-3)=-5+3 | d) | \displaystyle 5/2+1 > 5/(2+1) |
Answer
Exercise 5.1:2
Write the following formulas in LaTeX.
a) | \displaystyle 3\times 4\pm 4 | b) | \displaystyle 4x^2-\sqrt{x} |
c) | \displaystyle 4\times 3^n\ge n^3 | d) | \displaystyle 3-(5-2)=-(-3+5-2) |
Answer
Exercise 5.1:3
Write the following formulas in LaTeX
a) | \displaystyle \dfrac{x+1}{x^2-1} = \dfrac{1}{x-1} | b) | \displaystyle \left(\dfrac{5}{x}-1\right)(1-x) |
c) | \displaystyle \dfrac{\frac{1}{2}}{\frac{1}{3}+\frac{1}{4}} | d) | \displaystyle \dfrac{1}{1+\dfrac{1}{1+x}} |
Answer
Exercise 5.1:4
Write the following formulas in LaTeX
a) | \displaystyle \sin^2 x+\cos x | b) | \displaystyle \cos v=\cos\dfrac{3\pi}{2} |
c) | \displaystyle \cot 2x=\dfrac{1}{\tan 2x} | d) | \displaystyle \tan\dfrac{u}{2}=\dfrac{\sin u}{1+\cos u} |
Answer
Exercise 5.1:5
Write the following formulas in LaTeX
a) | \displaystyle \sqrt{4+x^2} | b) | \displaystyle \sqrt[n]{x+y}\ne\sqrt[n]{x}+\sqrt[n]{y} |
c) | \displaystyle \sqrt{\sqrt{3}} = \sqrt[4]{3} | d) | \displaystyle \left(\sqrt[4]{3}\right)^3\sqrt[3]{2+\sqrt{2}} |
Answer
Exercise 5.1:6
Write the following formulas in LaTeX
a) | \displaystyle \ln(4\times 3)=\ln 4+\ln 3 | b) | \displaystyle \ln(4-3)\ne \ln 4-\ln 3 |
c) | \displaystyle \log_{2}4 = \dfrac{\ln 4}{\ln 2} | d) | \displaystyle 2^{\log_{2}4} = 4 |
Answer
Exercise 5.1:7
Correct the following LaTeX maths code.
a) | 4^{\frac{3}{4}}(1-(3-4) |
b) | 2*sqrt(a+b) |
c) | cotx = \dfrac{1}{2}Sin 20^{o} |
Answer