Lösung 2.3:6b
Aus Online Mathematik Brückenkurs 1
Indem wir quadratische Ergänzung benutzen, können wir danach einfach den kleinsten Wert der Funktion finden,
\displaystyle x^{2}-4x+2 = (x-2)^{2}-2^{2}+2 = (x-2)^{2}-2\,\textrm{.} |
Nachdem \displaystyle (x-2)^{2} immer grösser als oder gleich null ist, ist der kleinste Wert des Ausdruckes -2, wenn \displaystyle x-2=0, also \displaystyle x=2 ist.