Solution 3.2:4b
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | We calculate what the expression will be |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>(2-i)+(5+3i) = 2+5+(-1+3)i = 7+2i</math>}} |
| + | |||
| + | and then calculate the magnitude, | ||
| + | |||
| + | {{Displayed math||<math>|7+2i| = \sqrt{7^2+2^2} = \sqrt{49+4} = \sqrt{53}\,\textrm{.}</math>}} | ||
| + | |||
| + | |||
| + | Note: It is not possible to calculate the magnitude of the terms individually | ||
| + | |||
| + | {{Displayed math||<math>|(2-i)+(5+3i)| \ne |2-i| + |5+3i|\,\textrm{.}</math>}} | ||
Current revision
We calculate what the expression will be
| \displaystyle (2-i)+(5+3i) = 2+5+(-1+3)i = 7+2i |
and then calculate the magnitude,
| \displaystyle |7+2i| = \sqrt{7^2+2^2} = \sqrt{49+4} = \sqrt{53}\,\textrm{.} |
Note: It is not possible to calculate the magnitude of the terms individually
| \displaystyle |(2-i)+(5+3i)| \ne |2-i| + |5+3i|\,\textrm{.} |
