Solution 3.2:4d
From Förberedande kurs i matematik 2
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | For magnitudes of quotients, we have the arithmetical rule |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>\left|\frac{z}{w}\right| = \frac{|z|}{|w|}\,\textrm{.}</math>}} |
| + | |||
| + | We can therefore take the magnitude of the numerator and denominator separately and then divide the magnitudes by each other, | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \left|\frac{3-4i}{3+2i}\right| | ||
| + | &= \frac{|3-4i|}{|3+2i|} | ||
| + | = \frac{\sqrt{3^2+(-4)^2}}{\sqrt{3^2+2^2}} | ||
| + | = \frac{\sqrt{9+16}}{\sqrt{9+4}} | ||
| + | = \frac{\sqrt{25}}{\sqrt{13}} | ||
| + | = \frac{5}{\sqrt{13}}\,\textrm{.} | ||
| + | \end{align}</math>}} | ||
Current revision
For magnitudes of quotients, we have the arithmetical rule
| \displaystyle \left|\frac{z}{w}\right| = \frac{|z|}{|w|}\,\textrm{.} |
We can therefore take the magnitude of the numerator and denominator separately and then divide the magnitudes by each other,
| \displaystyle \begin{align}
\left|\frac{3-4i}{3+2i}\right| &= \frac{|3-4i|}{|3+2i|} = \frac{\sqrt{3^2+(-4)^2}}{\sqrt{3^2+2^2}} = \frac{\sqrt{9+16}}{\sqrt{9+4}} = \frac{\sqrt{25}}{\sqrt{13}} = \frac{5}{\sqrt{13}}\,\textrm{.} \end{align} |
