Lösung 2.3:2b

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

Da wir ein Produkt von zwei Funktionen haben, scheint es selbstverständlich, partielle Integration zu probieren. Wählen wir die Faktoren so, dass wir \displaystyle x^3 ableiten (um den Exponenten zu reduzieren), müssen wir eine Stammfunktion von \displaystyle e^{x^2} finden und dies ist nicht möglich. Die andere Möglichkeit ist, dass wir \displaystyle x^3 integrieren und \displaystyle e^{x^2} ableiten.

\displaystyle \begin{align}

\int x^3\cdot e^{x^2}\,dx &= \frac{x^4}{4}\cdot e^{x^2} - \int\frac{x^4}{4}\cdot e^{x^2}2x\,dx\\[5pt] &= \frac{1}{4}x^{4}e^{x^2} - \frac{1}{2}\int x^5e^{x^2}\,dx \end{align}

Anscheinend wird das neue Integral nur schwieriger als das vorige.

Die Lösung ist, dass wir die Substitution \displaystyle u=x^2 machen. Schreiben wir das Integral wie

\displaystyle \int\limits_0^1 x^3e^{x^2}\,dx = \int\limits_0^1 x^2e^{x^2}x\,dx

sehen wir, dass "\displaystyle x\,dx" mit \displaystyle du ersetzt werden kann, während \displaystyle x^2 durch u ersetzt wird. So erhalten wir

\displaystyle \begin{align}

\int\limits_0^1 x^3e^{x^2}\,dx &= \int\limits_0^1 x^2e^{x^2}x\,dx\\[5pt] &= \left\{\begin{align} u &= x^2\\[5pt] du &= \bigl(x^2\bigr)'\,dx = 2x\,dx \end{align}\right\}\\[5pt] &= \int\limits_0^1 ue^u\tfrac{1}{2}\,du\\[5pt] &= \frac{1}{2}\int\limits_0^1 ue^u\,du\,\textrm{.} \end{align}

Dieses Integral können wir hingegen durch partielle Integration berechnen, indem wir den Faktor \displaystyle u ableiten.

\displaystyle \begin{align}

\frac{1}{2}\int\limits_0^1 ue^u\,du &= \frac{1}{2}\Bigl[\ ue^u\ \Bigr]_0^1 - \frac{1}{2}\int\limits_0^1 1\cdot e^u\,du\\[5pt] &= \frac{1}{2}\bigl(1\cdot e^1-0\bigr) - \frac{1}{2}\Bigl[\ e^u\ \Bigr]_0^1\\[5pt] &= \frac{1}{2}e - \frac{1}{2}\bigl(e^1-e^0\bigr)\\[5pt] &= \frac{1}{2}e - \frac{1}{2}e + \frac{1}{2}\\[5pt] &= \frac{1}{2} \end{align}