Lösung 3.3:4c

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

Durch quadratische Ergänzung der linken Seite erhalten wir

\displaystyle \begin{align}

(z+1)^2-1^2+3 &= 0\,,\\[5pt] (z+1)^2+2 &= 0\,\textrm{.} \end{align}

Und die Wurzeln sind \displaystyle z+1=\pm i\sqrt{2}, also \displaystyle z=-1+i\sqrt{2} und \displaystyle z=-1-i\sqrt{2}.

Wir substituieren die Wurzeln in der ursprünglichen Gleichung und erhalten

\displaystyle \begin{align} z=-1+i\sqrt{2}:\quad z^2+2z+3 &= \bigl(-1+i\sqrt{2}\,\bigr)^2 + 2\bigl(-1+i\sqrt{2}\bigr) + 3\\[5pt] &= (-1)^2 - 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 + 2i\sqrt{2} + 3\\[5pt] &= 1-2\cdot i\sqrt{2}-2-2+2i\sqrt{2}+3\\[5pt] &= 0,\\[10pt] z={}\rlap{-1-i\sqrt{2}:}\phantom{-1+i\sqrt{2}:}{}\quad z^2+2z+3 &= \bigl(-1-i\sqrt{2}\,\bigr)^2 + 2\bigl(-1-i\sqrt{2}\,\bigr) + 3\\[5pt] &= (-1)^2 + 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 - 2i\sqrt{2} + 3\\[5pt] &= 1+2\cdot i\sqrt{2} - 2 - 2 - 2\sqrt{2}i + 3\\[5pt] &= 0\,\textrm{.} \end{align}