Dag 11
Flervariabelanalys
GENERALISERADE DUBBELINTEGRALER
Hittills har vi räknat på dubbelintegraler där funktionen $f$ och området $D$ är begränsade. Om integranden eller integrationsområdet är obegränsat har vi att göra med en generaliserad integral.
I envariabelfallet löstes detta problem genom att sätta $\int_{0}^{\infty}f(x)dx=\lim_{N\to\infty}\int_{0}^{N}f(x)dx$, alltså den generaliserade integralen beräknas som ett gränsvärde av en "vanlig" integral. Tyvärr är det inte lika enkelt i de allmänna fallet med dubbelintegraler. Vi kommer därför här att begränsa vårt studium av generaliserade dubbelintegraler till fallet då $f$ utgörs av en positiv funktion på $D$.
- 14.3 Generaliserade dubbelintegraler. Läs Exempel 1-4 samt Remark.
Här ingår alltså inte "A Mean-Value Theorem for Double Integrals", även om du gärna får läsa detta stycke om du vill.
Gör följande övningsuppgifter:
- 14.3:
Om du har lust och tid över kan du även göra följande övningsuppgifter:
- 14.3: 1

