3.3 Övningar

Sommarmatte 2

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 28 juni 2007 kl. 13.43 (redigera)
KTH.SE:u1rp004j (Diskussion | bidrag)
(Övning 3.3:7)
← Gå till föregående ändring
Versionen från 3 juli 2007 kl. 19.17 (redigera) (ogör)
KTH.SE:u1tyze7e (Diskussion | bidrag)
(Korrekturläst)
Gå till nästa ändring →
Rad 1: Rad 1:
==Övning 3.3:1== ==Övning 3.3:1==
<div class="ovning"> <div class="ovning">
-Skriv följande tal i formen $a+ib$, där $a$ och $b$ är reella tal. +Skriv följande tal i formen $\,a+ib\,$, där $\,a\,$ och $\,b\,$ är reella tal.
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">
Rad 7: Rad 7:
<td class="ntext" width="50%">$(i-1)^{12}$</td> <td class="ntext" width="50%">$(i-1)^{12}$</td>
<td class="ntext">b)</td> <td class="ntext">b)</td>
-<td class="ntext" width="50%">$\left(\displaystyle\frac{1+i\sqrt{3}}{2}\right)^{12}$</td>+<td class="ntext" width="50%">$\displaystyle\Bigl(\frac{1+i\sqrt{3}}{2}\,\Bigr)^{12}$</td>
</tr> </tr>
<tr align="left"> <tr align="left">
Rad 13: Rad 13:
<td class="ntext" width="50%">$ (4\sqrt{3} -4i)^{22}$</td> <td class="ntext" width="50%">$ (4\sqrt{3} -4i)^{22}$</td>
<td class="ntext">d)</td> <td class="ntext">d)</td>
-<td class="ntext" width="50%">$\left(\displaystyle\frac{1+i\sqrt{3}}{1+i}\right)^{12}$</td>+<td class="ntext" width="50%">$\Bigl(\displaystyle\frac{1+i\sqrt{3}}{1+i}\,\Bigr)^{12}$</td>
</tr> </tr>
<tr align="left"> <tr align="left">
<td class="ntext">e)</td> <td class="ntext">e)</td>
-<td class="ntext" width="50%">$\displaystyle\frac{(1+i\sqrt{3})(1-i)^8}{(\sqrt{3}-i)^9}$</td>+<td class="ntext" width="50%">$\displaystyle\frac{(1+i\sqrt{3}\,)(1-i)^8}{(\sqrt{3}-i)^9}$</td>
</tr> </tr>
</table> </table>
Rad 25: Rad 25:
<div class=NavHead>Facit&nbsp;</div> <div class=NavHead>Facit&nbsp;</div>
<div class=NavContent> <div class=NavContent>
-Facit till alla delfrågorna<br \>+Facit till alla delfrågor<br \>
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">
<td class="ntext">a)</td> <td class="ntext">a)</td>
-<td class="ntext" width="33%">$-64$</td>+<td class="ntext" width="50%">$-64$</td>
<td class="ntext">b)</td> <td class="ntext">b)</td>
-<td class="ntext" width="33%">$1$</td>+<td class="ntext" width="50%">$1$</td>
-<td class="ntext">c)</td>+
-<td class="ntext" width="33%">$ 4\cdot 8^{21} - i \cdot 4\sqrt{3}\cdot 8^{21} $</td>+
</tr> </tr>
<tr align="left"> <tr align="left">
 +<td class="ntext">c)</td>
 +<td class="ntext" width="50%">$2^{65}+2^{65}\sqrt{3}\,i$</td>
<td class="ntext">d)</td> <td class="ntext">d)</td>
<td class="ntext" width="50%">$-64$</td> <td class="ntext" width="50%">$-64$</td>
 +</tr>
 +<tr align="left">
<td class="ntext">e)</td> <td class="ntext">e)</td>
-<td class="ntext" width="50%">$\frac{\sqrt{3}}{32} - \frac{i}{32} $</td>+<td class="ntext" width="50%">$\displaystyle\frac{\sqrt{3}}{32} - \frac{i}{32} $</td>
</tr> </tr>
</table> </table>
Rad 53: Rad 55:
<td class="ntext" width="50%">$(1+i)^{1/3}$</td> <td class="ntext" width="50%">$(1+i)^{1/3}$</td>
<td class="ntext">b)</td> <td class="ntext">b)</td>
-<td class="ntext" width="50%">$i^{1/4}$</td>+<td class="ntext" width="50%">$i^{\,1/4}$</td>
</tr> </tr>
<tr align="left"> <tr align="left">
<td class="ntext">c)</td> <td class="ntext">c)</td>
-<td class="ntext" width="50%">$((3+3i)(\sqrt{2}-\sqrt{2}i))^{1/5}$</td>+<td class="ntext" width="50%">$\bigl((3+3i)(\sqrt{2}-\sqrt{2}\,i\,)\bigr)^{1/5}$</td>
</tr> </tr>
</table> </table>
Rad 65: Rad 67:
<div class=NavHead>Facit&nbsp;</div> <div class=NavHead>Facit&nbsp;</div>
<div class=NavContent> <div class=NavContent>
-Facit till alla delfrågorna<br \>+Facit till alla delfrågor<br/>
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">
<td class="ntext">a)</td> <td class="ntext">a)</td>
-<td class="ntext" width="33%">$ \frac{2^{2/3}(\sqrt{3}+1)}{4} + i\frac{2^{2/3}(\sqrt{3}-1)}{4} $</td>+<td class="ntext" width="100%">$\displaystyle 2^{1/6}\,\Bigl(\cos\Bigl(\frac{\pi}{12}+\frac{2k\pi}{3}\Bigr)+i\,\sin\Bigl(\frac{\pi}{12}+\frac{2k\pi}{3}\Bigr)\,\Bigr)\quad$ för $\ k=0,1,2$</td>
 +</tr>
 +<tr align="left">
<td class="ntext">b)</td> <td class="ntext">b)</td>
-<td class="ntext" width="33%">$e^{i\pi/8} = \frac{\sqrt{2+\sqrt{2}}}{2} + i\frac{\sqrt{2-\sqrt{2}}}{2} $</td>+<td class="ntext" width="100%">$\displaystyle \cos\Bigl(\frac{\pi}{8}+\frac{k\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{8}+\frac{k\pi}{2}\,\Bigr)\quad$ för $\ k=0,1,2,3$</td>
 +</tr>
 +<tr align="left">
<td class="ntext">c)</td> <td class="ntext">c)</td>
-<td class="ntext" width="33%">$ 3^{1/5}2^{3/10} $</td>+<td class="ntext" width="50%">$2^{3/10}\,3^{1/5}$</td>
</tr> </tr>
</table> </table>
Rad 93: Rad 99:
<tr align="left"> <tr align="left">
<td class="ntext">d)</td> <td class="ntext">d)</td>
-<td class="ntext" width="50%">$(z-1)^4+4=0$</td>+<td class="ntext" width="33%">$(z-1)^4+4=0$</td>
<td class="ntext">e)</td> <td class="ntext">e)</td>
-<td class="ntext" width="50%">$\left(\displaystyle \frac{z+i}{z-i}\right)^2 = -1$</td>+<td class="ntext" width="33%">$\displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1$</td>
</tr> </tr>
</table> </table>
Rad 103: Rad 109:
<div class=NavHead>Facit&nbsp;</div> <div class=NavHead>Facit&nbsp;</div>
<div class=NavContent> <div class=NavContent>
-Facit till alla delfrågorna<br \>+Facit till alla delfrågor<br \>
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">
<td class="ntext">a)</td> <td class="ntext">a)</td>
-<td class="ntext" width="33%">$z= \left\{\begin{matrix} 1 \\ -1 \\ i \\ -i\\ \end{matrix}\right.$</td>+<td class="ntext" width="33%">$z= \left\{\begin{matrix} \phantom{-}1 \\ -1 \\ \phantom{-}i \\ -i\\ \end{matrix}\right.$</td>
<td class="ntext">b)</td> <td class="ntext">b)</td>
-<td class="ntext" width="33%">$z = \left\{\begin{matrix} \frac{1}{2}+\frac{\sqrt{3}i}{2} \\ -1 \\ \frac{1}{2}-\frac{\sqrt{3}i}{2} \\ \end{matrix}\right.$</td>+<td class="ntext" width="33%">$z = \left\{\begin{matrix} \frac{1}{2}+\frac{1}{2}\sqrt{3}\,i \\ -1\phantom{{}-\frac{1}{2}\sqrt{3}\,i} \\ \frac{1}{2}-\frac{1}{2}\sqrt{3}\,i \\ \end{matrix}\right.$</td>
<td class="ntext">c)</td> <td class="ntext">c)</td>
-<td class="ntext" width="33%">$z= \left\{\begin{matrix} 2^{1/10}e^{i\pi/4} \\ 2^{1/10}e^{13i\pi/20} \\ 2^{1/10}e^{21i\pi/20} \\ 2^{1/10}e^{29i\pi/20}\\ 2^{1/10}e^{37i\pi/20}\\ \end{matrix}\right. $</td>+<td class="ntext" width="33%">$\displaystyle z=2^{1/10}\exp\Bigl(\frac{\pi i}{4}+\frac{2k\pi i}{5}\Bigr)$ för $\ k=0,1,2,3,4$</td>
</tr> </tr>
<tr align="left"> <tr align="left">
<td class="ntext">d)</td> <td class="ntext">d)</td>
-<td class="ntext" width="50%">$z= \left\{\begin{matrix} 2+i \\ 2-i \\ i \\ -i\\ \end{matrix}\right.$</td>+<td class="ntext" width="33%">$z= \left\{\begin{matrix} 2+i \\ 2-i \\ \phantom{-}i \\ -i\\ \end{matrix}\right.$</td>
<td class="ntext">e)</td> <td class="ntext">e)</td>
-<td class="ntext" width="50%">$z = \left\{\begin{matrix} 1 \\ -1 \end{matrix}\right.$</td>+<td class="ntext" width="33%">$z = \left\{\begin{matrix} \phantom{-}1 \\ -1 \end{matrix}\right.$</td>
</tr> </tr>
</table> </table>
Rad 145: Rad 151:
<div class=NavHead>Facit&nbsp;</div> <div class=NavHead>Facit&nbsp;</div>
<div class=NavContent> <div class=NavContent>
-Facit till alla delfrågorna<br \>+Facit till alla delfrågor<br \>
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">
Rad 151: Rad 157:
<td class="ntext" width="50%">$(z+1)^2+2$</td> <td class="ntext" width="50%">$(z+1)^2+2$</td>
<td class="ntext">b)</td> <td class="ntext">b)</td>
-<td class="ntext" width="50%">$\left(z+\frac{3}{2}i\right)^2+2$</td>+<td class="ntext" width="50%">$\left(z+\frac{3}{2}i\,\right)^2+2$</td>
</tr> </tr>
<tr align="left"> <tr align="left">
<td class="ntext">c)</td> <td class="ntext">c)</td>
-<td class="ntext" width="50%">$-(z+i-2)^2+4(1-i)$</td>+<td class="ntext" width="50%">$-(z-2+i)^2+4(1-i)$</td>
<td class="ntext">d)</td> <td class="ntext">d)</td>
-<td class="ntext" width="50%">$i\left(z+\left(\frac{2/i+3}{2}\right)\right)^2-4-\displaystyle\frac{5}{4}i$</td>+<td class="ntext" width="50%">$i\bigl(z+\frac{3}{2}-i\bigl)^2-4-\frac{5}{4}\,i$</td>
</tr> </tr>
</table> </table>
Rad 185: Rad 191:
<div class=NavHead>Facit&nbsp;</div> <div class=NavHead>Facit&nbsp;</div>
<div class=NavContent> <div class=NavContent>
-Facit till alla delfrågorna<br \>+Facit till alla delfrågor<br \>
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">
<td class="ntext">a)</td> <td class="ntext">a)</td>
-<td class="ntext" width="50%">$z= \left\{\begin{matrix} \frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2} \\ \end{matrix}\right.$</td>+<td class="ntext" width="50%">$z= \left\{\begin{matrix} \phantom{-}(1+i)/\sqrt{2}\\ -(1+i)/\sqrt{2}\\ \end{matrix}\right.$</td>
<td class="ntext">b)</td> <td class="ntext">b)</td>
<td class="ntext" width="50%">$z = \left\{\begin{matrix} 2+i \\ 2-i \\ \end{matrix}\right.$</td> <td class="ntext" width="50%">$z = \left\{\begin{matrix} 2+i \\ 2-i \\ \end{matrix}\right.$</td>
Rad 195: Rad 201:
<tr align="left"> <tr align="left">
<td class="ntext">c)</td> <td class="ntext">c)</td>
-<td class="ntext" width="50%">$z= \left\{\begin{matrix} -1 \\ 3 \\ \end{matrix}\right. $</td>+<td class="ntext" width="50%">$z= \left\{\begin{matrix} -1 \\ \phantom{-}3 \\ \end{matrix}\right. $</td>
<td class="ntext">d)</td> <td class="ntext">d)</td>
-<td class="ntext" width="50%">$z= \left\{\begin{matrix} \frac{1+i\sqrt{15}}{4}\\ \frac{1-i\sqrt{15}}{4} \\ \end{matrix}\right.$</td>+<td class="ntext" width="50%">$z= \left\{\begin{matrix} (1+i\sqrt{15})/4\\ (1-i\sqrt{15})/4 \end{matrix}\right.$</td>
</tr> </tr>
</table> </table>
Rad 209: Rad 215:
<tr align="left"> <tr align="left">
<td class="ntext">a)</td> <td class="ntext">a)</td>
-<td class="ntext" width="50%">$z^2-2(1+i)z+2i-1$</td>+<td class="ntext" width="50%">$z^2-2(1+i)z+2i-1=0$</td>
<td class="ntext">b)</td> <td class="ntext">b)</td>
<td class="ntext" width="50%">$z^2-(2-i)z+(3-i)=0$</td> <td class="ntext" width="50%">$z^2-(2-i)z+(3-i)=0$</td>
Rad 215: Rad 221:
<tr align="left"> <tr align="left">
<td class="ntext">c)</td> <td class="ntext">c)</td>
-<td class="ntext" width="50%">$z^2-(1+3i)z-4+3i$</td>+<td class="ntext" width="50%">$z^2-(1+3i)z-4+3i=0$</td>
<td class="ntext">d)</td> <td class="ntext">d)</td>
<td class="ntext" width="50%">$(4+i)z^2+(1-21i)z=17$</td> <td class="ntext" width="50%">$(4+i)z^2+(1-21i)z=17$</td>
Rad 225: Rad 231:
<div class=NavHead>Facit&nbsp;</div> <div class=NavHead>Facit&nbsp;</div>
<div class=NavContent> <div class=NavContent>
-Facit till alla delfrågorna<br \>+Facit till alla delfrågor<br \>
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">
Rad 231: Rad 237:
<td class="ntext" width="50%">$z= \left\{\begin{matrix} 2+1 \\ i \\ \end{matrix}\right.$</td> <td class="ntext" width="50%">$z= \left\{\begin{matrix} 2+1 \\ i \\ \end{matrix}\right.$</td>
<td class="ntext">b)</td> <td class="ntext">b)</td>
-<td class="ntext" width="50%">$z = \left\{\begin{matrix} 1+i \\ 1-2i \\ \end{matrix}\right.$</td>+<td class="ntext" width="50%">$z = \left\{\begin{matrix} 1+i\phantom{2} \\ 1-2i \\ \end{matrix}\right.$</td>
</tr> </tr>
<tr align="left"> <tr align="left">
<td class="ntext">c)</td> <td class="ntext">c)</td>
-<td class="ntext" width="50%">$z= \left\{\begin{matrix} 2+i \\ -1+2i \\ \end{matrix}\right. $</td>+<td class="ntext" width="50%">$z= \left\{\begin{matrix} \phantom{-}2+i\phantom{2} \\ -1+2i \\ \end{matrix}\right. $</td>
<td class="ntext">d)</td> <td class="ntext">d)</td>
-<td class="ntext" width="50%">$z= \left\{\begin{matrix} -i \\ -1-4i \\ \end{matrix}\right.$</td>+<td class="ntext" width="50%">$z= \left\{\begin{matrix} i \\ 1+4i \\ \end{matrix}\right.$</td>
</tr> </tr>
</table> </table>
Rad 245: Rad 251:
==Övning 3.3:7== ==Övning 3.3:7==
<div class="ovning"> <div class="ovning">
-Bestäm lösningarna till $z^2=1+i$ dels i polär form, dels i formen $a+ib$, där $a$ och $b$ är reella tal. Använd resultatet för att beräkna $\tan \frac{\pi}{8}$.+Bestäm lösningarna till $\,z^2=1+i\,$ dels i polär form, dels i formen $\,a+ib\,$, där $\,a\,$ och $\,b\,$ är reella tal. Använd resultatet för att beräkna $\ \tan \frac{\pi}{8}\,$.
</div> </div>
Rad 251: Rad 257:
<div class=NavHead>Facit&nbsp;</div> <div class=NavHead>Facit&nbsp;</div>
<div class=NavContent> <div class=NavContent>
-Facit till alla delfrågorna<br \>+Facit till alla delfrågor<br \>
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">
<td class="ntext">Lösningar:</td> <td class="ntext">Lösningar:</td>
-<td class="ntext" width="100%">$z= \left\{\begin{matrix} 2^{1/4}(\cos\frac{\pi}{8}+i\sin\frac{\pi}{8}) = \sqrt{\frac{\sqrt{2}+1 }{2}}+i \sqrt{\frac{\sqrt{2}-1 }{2}} \\ 2^{1/4}(\cos\frac{9\pi}{8}+i\sin\frac{9\pi}{8}) = -\sqrt{\frac{\sqrt{2}+1 }{2}}-i \sqrt{\frac{\sqrt{2}-1 }{2}} \\ \end{matrix}\right.$</td>+<td class="ntext" width="100%">$z= \left\{\eqalign{&\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{\pi}{8}+i\,\sin\frac{\pi}{8}\bigr)\cr &\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{9\pi}{8}+i\,\sin\frac{9\pi}{8}\bigr)}\right. = \left\{\eqalign{&\textstyle\phantom{-}{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}+i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}\cr &\textstyle -{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}-i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}}\right.$</td>
</tr> </tr>
<tr align="left"> <tr align="left">
<td class="ntext">Uttryck:</td> <td class="ntext">Uttryck:</td>
-<td class="ntext" width="100%">$\tan \frac{\pi}{8} = \sqrt{2} - 1$</td>+<td class="ntext" width="100%">$\displaystyle\tan \frac{\pi}{8} = \sqrt{2} - 1$</td>
</tr> </tr>
</table> </table>
</div> </div>
</div> </div>

Versionen från 3 juli 2007 kl. 19.17

Innehåll

Övning 3.3:1

Skriv följande tal i formen $\,a+ib\,$, där $\,a\,$ och $\,b\,$ är reella tal.

a) $(i-1)^{12}$ b) $\displaystyle\Bigl(\frac{1+i\sqrt{3}}{2}\,\Bigr)^{12}$
c) $ (4\sqrt{3} -4i)^{22}$ d) $\Bigl(\displaystyle\frac{1+i\sqrt{3}}{1+i}\,\Bigr)^{12}$
e) $\displaystyle\frac{(1+i\sqrt{3}\,)(1-i)^8}{(\sqrt{3}-i)^9}$

Övning 3.3:2

Beräkna följande rotuttryck

a) $(1+i)^{1/3}$ b) $i^{\,1/4}$
c) $\bigl((3+3i)(\sqrt{2}-\sqrt{2}\,i\,)\bigr)^{1/5}$

Övning 3.3:3

Lös ekvationerna

a) $z^4=1$ b) $z^3=-1$ c) $ z^5=-1-i$
d) $(z-1)^4+4=0$ e) $\displaystyle\Bigl(\frac{z+i}{z-i}\Bigr)^2 = -1$

Övning 3.3:4

Kvadratkomplettera följande uttryck

a) $z^2 +2z+3$ b) $z^2 +3iz-\frac{1}{4}$
c) $-z^2-2iz +4z+1$ d) $iz^2+(2+3i)z-1$

Övning 3.3:5

Lös ekvationerna

a) $z^2=i$ b) $z^2-4z+5=0$
c) $-z^2+2z+3=0$ d) $\displaystyle\frac{1}{z} + z = \frac{1}{2}$

Övning 3.3:6

Lös ekvationerna

a) $z^2-2(1+i)z+2i-1=0$ b) $z^2-(2-i)z+(3-i)=0$
c) $z^2-(1+3i)z-4+3i=0$ d) $(4+i)z^2+(1-21i)z=17$

Övning 3.3:7

Bestäm lösningarna till $\,z^2=1+i\,$ dels i polär form, dels i formen $\,a+ib\,$, där $\,a\,$ och $\,b\,$ är reella tal. Använd resultatet för att beräkna $\ \tan \frac{\pi}{8}\,$.

Personliga verktyg