Versionen från 18 juli 2007 kl. 09.27 (redigera) KTH.SE:u1zpa8nw (Diskussion | bidrag)
← Gå till föregående ändring |
Versionen från 18 juli 2007 kl. 09.31 (redigera) (ogör) KTH.SE:u1zpa8nw (Diskussion | bidrag)
Gå till nästa ändring → |
| Rad 210: |
Rad 210: |
| | <table width="100%" cellspacing="10px"> | | <table width="100%" cellspacing="10px"> |
| | <tr align="left"><td>Vinkeln $2\pi\bigl(1-\sqrt{\frac{2}{3}}\,\bigr)\,$ radianer ska tas bort.</td></tr> | | <tr align="left"><td>Vinkeln $2\pi\bigl(1-\sqrt{\frac{2}{3}}\,\bigr)\,$ radianer ska tas bort.</td></tr> |
| | + | </table> |
| | + | |
| | + | __NOTOC__ |
| | + | ==Övning 1.1:1== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="100%">$f'(-4)>0, \,\,\,\, f'(1)<0$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="100%">$x=-3$ och $x=2$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$-3\le x \le 2$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.1:2== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a) $f'(x)=2x-3$ </td> |
| | + | </tr><tr> |
| | + | <td class="ntext">b) $f'(x)=-\sin x -\cos x$ </td> |
| | + | </tr><tr> |
| | + | <td class="ntext">c) $f'(x)=e^x-\displaystyle\frac{1}{x}$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">d) $f'(x)=\displaystyle\frac{1}{2}x^{-1/2}=\frac{1}{2\sqrt x}$</td> |
| | + | </tr><tr> |
| | + | <td class="ntext">e) $f'(x)=4x(x^2-1)$</td> |
| | + | </tr><tr> |
| | + | <td class="ntext">f) $f'(x)=-\sin \left(x+\frac{\pi}{3}\right)$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.1:3== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext" width="100%">$14{,}0\,$ m/s</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.1:4== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext" width="100%"> |
| | + | Tangentens ekvation: $\ y=2x-1$<br> |
| | + | Normalens ekvation: $\ y=-\displaystyle\frac{1}{2}x+\frac{3}{2}$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.1:5== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext" width="100%">$\bigl(1-\sqrt2, -3+2\sqrt2\bigr)\,$ och $\,\bigl(1+\sqrt2, -3-2\sqrt2\bigr)$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.2:1== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="33%">$\cos^2x-\sin^2x=\cos2x$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="33%">$2x\ln x+ x$</td> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle\frac{x^2+2x-1}{(x+1)^2}=1-\frac{2}{(x+1)^2}$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle\frac{\cos x}{x}-\frac{\sin x}{x^2}$</td> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle\frac{1}{\ln x}-\frac{1}{(\ln x)^2}$</td> |
| | + | <td class="ntext">f)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle \frac{\ln x + 1}{\sin x}-\frac{x\ln x \cos x}{\sin^2x}$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.2:2== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="33%">$\cos x^2 \cdot 2x$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="33%">$e^{x^2+x}(2x+1)$</td> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle - \frac{\sin x}{2\sqrt{\cos x}}$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle\frac{1}{x\ln x}$</td> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="33%">$(2x+1)^3(10x+1)$</td> |
| | + | <td class="ntext">f)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle\frac{\sin\sqrt{1-x}}{2\sqrt{1-x}}$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.2:3== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle\frac{1}{2\sqrt{x}\sqrt{x+1}}$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle - \frac{1}{(x-1)^{3/2}\sqrt{x+1}}$</td> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle - \frac{1-2x^2}{x^2(1-x^2)^{3/2}}$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="33%">$-\cos\cos\sin x \cdot \sin\sin x \cdot \cos x$</td> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="33%">$e^{\sin x^2}\cdot \cos x^2 \cdot 2x$</td> |
| | + | <td class="ntext">f)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle x^{\tan x}\Bigl(\frac{\ln x}{\cos^2x}+\frac{\tan x}{x}\Bigr)$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.2:4== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle\frac{3x}{(1-x^2)^{5/2}}$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle - \frac{2\sin \ln x}{x}$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.3:1== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">Funktionen har en kritisk punkt då $x = 1$. Funktionen saknar terrasspunkt. Då $x = 1$ har funktionen som extrempunkt ett lokalt och globalt minimum. Funktionen är strängt avtagande i intervallet $x\le 0$, funktionen är strängt växande i intervallet $x\ge 0$. </td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">Funktionen har en kritisk punkt då $x = -1$ och då $x=1$. Funktionen saknar terrasspunkt. Funktionen har som lokala extrempunkter ett lokalt minimum då $x = -1$ och ett lokalt maximum då $x=1$. Funktionen har ett lokalt och globalt minimum i den vänstra ändpunkten för funktionens definitionsintervall och ett lokalt och globalt maximum i den högra ändpunkten. Funktionen är strängt växande i intervallen $x\le -1$ och $x\ge 1$, funktionen är strängt avtagande i intervallet $-1\le x\le 1$.</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">Funktionen har kritiska punkter då $x = -2$, då $x=-1$ och då $x=1/2$. Funktionen har en terrasspunkt då $x=-1$. Funktionen har som extrempunkter ett lokalt och globalt minimum då $x = -2$, ett lokalt maximum då $x=1/2$, ett lokalt och globalt maximum i vänstra ändpunkten för funktionens definitionsintervall och ett lokalt minimum i den högra ändpunkten för definitionsintervallet. Funktionen är strängt avtagande i intervallet $x\le -2$, strängt växande i intervallet $-2\le x\le 1/2$ och strängt avtagande i intervallet $x\ge 1/2$.</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">Funktionen har kritiska punkter då $x = -5/2$ och då $x=1/2$. Funktionen saknar terrasspunkt. Funktionen har som extrempunkter ett lokalt minimum i vänstra ändpunkten för funktionens definitionsintervall, ett lokalt och globalt minimum då $x = -5/2$, ett lokalt och globalt maximum då $x=-1$, ett lokalt miminum då $x=-1/2$, ett lokalt maximum då $x=1/2$ och ett lokalt maximum i högra ändpunkten för funktionens definitionsintervall. Funktionen är strängt avtagande i intervallet $x\le -5/2$, strängt växande i intervallet $-5/2\le x\le -3/4$, strängt avtagande i intervallet $-3/4\le x\le -1/2$, strängt växande då $-1/2\le x\le 1/2$ och strängt avtagande i intervallet $x\ge 1/2$.</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.3:2== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$x=1\,$ (lokal minimipunkt)</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$x=\frac{3}{2}\,$ (lokal maximipunkt)</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$x=-2\,$ (lokal maximipunkt)<br> $x=1\,$ (lokal minimipunkt)</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">lokal extrempunkt saknas</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.3:3== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$x=0\,$ (lokal maximipunkt)</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$x=-\frac{1}{3}\ln\frac{5}{3}\,$ (lokal minimipunkt)</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$x=1/e\,$ (lokal minimipunkt)</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$x=-\sqrt{\sqrt{2}-1}\,$ (lokal maximipunkt)<br>$x=0\,$ (lokal minimipunkt)<br>$x=\sqrt{\sqrt{2}-1}\,$ (lokal maximipunkt)</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left" valign="top"> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="50%">$x=-3\,$ (lokal minimipunkt)<br>$x=-2\,$ (lokal maximipunkt)<br>$x=1\,$ (lokal minimipunkt)<br>$x=3\,$ (lokal maximipunkt)</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.3:4== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"><td>$P = \bigl(1/\sqrt{3},2/3\bigr)$</td></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.3:5== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"><td>$\alpha=\pi/6$</td></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.3:6== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"><td>radie ${}={}$ höjd $\displaystyle {}=\sqrt[3]{\frac{V}{\pi}}$ </td></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 1.3:7== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"><td>Vinkeln $2\pi\bigl(1-\sqrt{\frac{2}{3}}\,\bigr)\,$ radianer ska tas bort.</td></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 2.1:1== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$6$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$2$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$2$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{5}{2}$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 2.1:2== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{44}{3}$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle-\frac{9}{2}$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{32}{3}$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$1$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 2.1:3== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$-\cos x + C$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle-\frac{\cos 2x}{2}+C$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{e^{3x}}{3}+\frac{e^{2x}}{2}+C$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{x^2}{2}+\ln x + C$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 2.1:4== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext" align="left">a) $3-\displaystyle\frac{1}{\sqrt2}$ a.e.</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">b) $\displaystyle 4.\sqrt{3}$ a.e.</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c) $32$ a.e.</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">d) $\sqrt{2}-1-\ln(\sqrt{2}-1)\,$ a.e.</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr><tr align="left"> |
| | + | <td class="ntext">e) $\displaystyle\frac{9}{2}$ a.e.</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 2.1:5== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext" align="left">a) $\displaystyle\frac{2}{27}\left((x+9)\sqrt{x+9}+x\sqrt{x}\right)+C$</td> |
| | + | </tr> |
| | + | <tr><td height="5px"/></tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">b) $-\displaystyle\frac{\sin2x}{4}+\frac{x}{2}+C$</td> |
| | + | </tr> |
| | </table> | | </table> |