Versionen från 18 juli 2007 kl. 09.32 (redigera) KTH.SE:u1zpa8nw (Diskussion | bidrag)
← Gå till föregående ändring |
Versionen från 18 juli 2007 kl. 10.37 (redigera) (ogör) KTH.SE:u1zpa8nw (Diskussion | bidrag)
Gå till nästa ändring → |
| Rad 368: |
Rad 368: |
| | <td class="ntext">d)</td> | | <td class="ntext">d)</td> |
| | <td class="ntext" width="50%">$x-\arctan x + C$</td> | | <td class="ntext" width="50%">$x-\arctan x + C$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 2.3:1== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$-2(x+1)e^{-x}+C$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$-(x+1)\cos x+\sin x + C$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$2x\cos x + (x^2-2)\sin x + C$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{x^2}{2}\left(\ln x - \frac{1}{2}\right) + C$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 2.3:2== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$2e^{\sqrt{x}}\left(\sqrt{x}-1\right)+C$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{1}{2}$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$-\ln|\cos x|+C$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$x(\ln x-1)+C$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.1:1== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$8+3i$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$-2+4i$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$-3+2i$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$31+i$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="50%">$7-i$</td> |
| | + | <td class="ntext">f)</td> |
| | + | <td class="ntext" width="50%">$1-i$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.1:2== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle \frac{1}{2} - \frac{5}{2}\,i$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle -\frac{19}{26} + \frac{2}{13}\,i$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle -\frac{11}{4}-\frac{5\sqrt3}{4}\,i$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle \frac{7}{130} -\frac{93}{65}\,i$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.1:3== |
| | + | $a=-6$ |
| | + | |
| | + | |
| | + | ==Övning 3.1:4== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$z=2+3i$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$z=\displaystyle\frac{4}{5} + \frac{7}{5}i$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$z=2+i$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$z=\displaystyle \frac{3}{5} - \frac{1}{5}i$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="50%">$z=\displaystyle \frac{2}{3}-i$</td> |
| | + | <td class="ntext">f)</td> |
| | + | <td class="ntext" width="50%">$z=3+i$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.2:1== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)<br\>[[Bild:f_3_2_1a.gif]]</td> |
| | + | <td class="ntext">b)<br\>[[Bild:f_3_2_1b.gif]]</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)<br\>[[Bild:f_3_2_1c.gif]]</td> |
| | + | <td class="ntext">d)<br\>[[Bild:f_3_2_1d.gif]]</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.2:2== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)<br\>[[Bild:f_3_2_2a.gif]]</td> |
| | + | <td class="ntext">b)<br\>[[Bild:f_3_2_2b.gif]]</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)<br\>[[Bild:f_3_2_2c.gif]]</td> |
| | + | <td class="ntext">d)<br\>[[Bild:f_3_2_2d.gif]]</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">e)<br\>[[Bild:f_3_2_2e.gif]]</td> |
| | + | <td class="ntext">f)<br\>[[Bild:f_3_2_2f.gif]]</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.2:3== |
| | + | $2+4i$ |
| | + | |
| | + | ==Övning 3.2:4== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$5$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\sqrt{53}$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$5\sqrt{13}$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{5}{\sqrt{13}}$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.2:5== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$\pi$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{3\pi}{4}$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$-\displaystyle\frac{\pi}{12}\,$ eller $\,\displaystyle\frac{23}{12}\pi$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{\pi}{4}$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.2:6== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle3(\cos 0 + i\,\sin 0)$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle11\left(\cos \frac{3\pi}{2} + i\,\sin\frac{3\pi}{2}\right)$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle4\sqrt2\left(\cos \frac{5\pi}{4} + i\,\sin\frac{5\pi}{4}\right)$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle2\sqrt{10}\left(\cos \frac{\pi}{3} + i\,\sin\frac{\pi}{3}\right)$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\sqrt2\left(\cos \frac{\pi}{12} + i\,\sin\frac{\pi}{12}\right)$</td> |
| | + | <td class="ntext">f)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{\sqrt2}{3}\left(\cos \frac{\pi}{4} + i\,\sin\frac{\pi}{4}\right)$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.3:1== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$-64$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$1$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$2^{65}+2^{65}\sqrt{3}\,i$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$-64$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="50%">$\displaystyle\frac{\sqrt{3}}{32} - \frac{i}{32} $</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.3:2== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="33%">$z= \left\{\begin{matrix} \phantom{-}1 \\ -1 \\ \phantom{-}i \\ -i\\ \end{matrix}\right.$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="33%">$z = \left\{\begin{matrix} \frac{1}{2}+\frac{1}{2}\sqrt{3}\,i \\ -1\phantom{{}-\frac{1}{2}\sqrt{3}\,i} \\ \frac{1}{2}-\frac{1}{2}\sqrt{3}\,i \\ \end{matrix}\right.$</td> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle z=2^{1/10}\exp\Bigl(\frac{\pi i}{4}+\frac{2k\pi i}{5}\Bigr)$ för $\ k=0,1,2,3,4$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="33%">$z= \left\{\begin{matrix} 2+i \\ 2-i \\ \phantom{-}i \\ -i\\ \end{matrix}\right.$</td> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="33%">$z = \left\{\begin{matrix} \phantom{-}1 \\ -1 \end{matrix}\right.$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.3:3== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$(z+1)^2+2$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$\left(z+\frac{3}{2}i\,\right)^2+2$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$-(z-2+i)^2+4(1-i)$</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$i\bigl(z+\frac{3}{2}-i\bigl)^2-4-\frac{5}{4}\,i$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.3:4== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$z= \left\{\begin{matrix} \phantom{-}(1+i)/\sqrt{2}\\ -(1+i)/\sqrt{2}\\ \end{matrix}\right.$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$z = \left\{\begin{matrix} 2+i \\ 2-i \\ \end{matrix}\right.$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$z= \left\{\begin{matrix} -1 \\ \phantom{-}3 \\ \end{matrix}\right. $</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$z= \left\{\begin{matrix} (1+i\sqrt{15})/4\\ (1-i\sqrt{15})/4 \end{matrix}\right.$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.3:5== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$z= \left\{\begin{matrix} 2+1 \\ i \\ \end{matrix}\right.$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$z = \left\{\begin{matrix} 1+i\phantom{2} \\ 1-2i \\ \end{matrix}\right.$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="50%">$z= \left\{\begin{matrix} \phantom{-}2+i\phantom{2} \\ -1+2i \\ \end{matrix}\right. $</td> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="50%">$z= \left\{\begin{matrix} i \\ 1+4i \\ \end{matrix}\right.$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.3:6== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">Lösningar:</td> |
| | + | <td class="ntext" width="100%">$z= \left\{\eqalign{&\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{\pi}{8}+i\,\sin\frac{\pi}{8}\bigr)\cr &\textstyle\sqrt[\scriptstyle 4]{2}\bigl(\cos\frac{9\pi}{8}+i\,\sin\frac{9\pi}{8}\bigr)}\right. = \left\{\eqalign{&\textstyle\phantom{-}{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}+i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}\cr &\textstyle -{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}+2}\vphantom{2^{2^{\scriptstyle 2}}}}-i\,{\textstyle\frac{1}{2}}\sqrt{\smash{2\sqrt{2}-2}\vphantom{2^{2^{\scriptstyle 2}}}}}\right.$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">Uttryck:</td> |
| | + | <td class="ntext" width="100%">$\displaystyle\tan \frac{\pi}{8} = \sqrt{2} - 1$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.4:1== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="33%">$x+1$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle x-1+\frac{1}{x+1}$</td> |
| | + | <td class="ntext">c)</td> |
| | + | <td class="ntext" width="33%">$x^2-ax+a^2$</td> |
| | + | </tr> |
| | + | <tr align="left"> |
| | + | <td class="ntext">d)</td> |
| | + | <td class="ntext" width="33%">$x^2-x+2$</td> |
| | + | <td class="ntext">e)</td> |
| | + | <td class="ntext" width="33%">$\displaystyle x-1+\frac{2x+2}{x^2+3x+1}$</td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.4:2== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext"> |
| | + | $ z = \Bigl\{\eqalign{&1+i\cr &1-i}$ |
| | + | </td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.4:3== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext"> |
| | + | $z = \left\{\begin{matrix}-1+i\cr -1-i\cr \phantom{-}2i\cr -2i\end{matrix}\right.$ |
| | + | </td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.4:4== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext"> |
| | + | Välj $\,a=1\,$ och $\,b=10\,$. Lösningarna är $\ z = \left\{ \begin{matrix} 1-2i \\ 1+2i \\ -2 \end{matrix} \right.$ |
| | + | </td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.4:5== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext"> |
| | + | Två fall: |
| | + | * Välj $\,a=8\,$ och $\,b=-3\,$. Lösningarna är $\,z=1\,$ (trippelroten) och $\,z=-3\,$. |
| | + | * Välj $\,a=-8\,$ och $\,b=-3\,$. Lösningarna är $\,z=-1\,$ (trippelroten) och $\,z=3\,$. |
| | + | </td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 3.5:6== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext"> |
| | + | $ z = \left\{ \begin{matrix} \phantom{-}i\sqrt{6}\\ -i\sqrt{6} \\ -\frac{3}{2} + \frac{1}{2}\sqrt{29}\,i \\ -\frac{3}{2} - \frac{1}{2}\sqrt{29}\,i \end{matrix} \right.$ |
| | + | </td> |
| | + | </tr> |
| | + | </table> |
| | + | |
| | + | ==Övning 2.5:7== |
| | + | <table width="100%" cellspacing="10px"> |
| | + | <tr align="left"> |
| | + | <td class="ntext">a)</td> |
| | + | <td class="ntext" width="50%">$(z-1)(z-2)(z-4) = z^3 -7z^2 + 14z - 8$</td> |
| | + | <td class="ntext">b)</td> |
| | + | <td class="ntext" width="50%">$(z+1-i)(z+1+i) = z^2+2z+2 $</td> |
| | </tr> | | </tr> |
| | </table> | | </table> |