3.3 Övningar
Sommarmatte 2
(Skillnad mellan versioner)
KTH.SE:u1rp004j (Diskussion | bidrag)
(Ny sida: ==Övning 3.3:1== <div class="ovning"> Rita in följande mängder i det komplexa talplanet <table width="100%" cellspacing="10px"> <tr align="left"> <td class="ntext">a)</td> <td class="nte...)
Gå till nästa ändring →
Versionen från 4 juni 2007 kl. 14.16
Innehåll |
[redigera] Övning 3.3:1
Rita in följande mängder i det komplexa talplanet
| a) | $0\le \mbox{Im}\, z \le 3$ | b) | $0 \le \mbox{Re} \, z \le \mbox{Im}\, z \le 1$ |
| c) | $ |z|=2$ | d) | $|z-1-i|=3$ |
| e) | $ \mbox{Re}\, z = i + \bar z$ |
[redigera] Övning 3.3:2
Givet de komplexa talen $z=2+i , \, w=2+3i$ och $u=-1-2i$. Markera följande tal i det komplexa talplanet
| a) | $z$ och $w$ | b) | $z+u$ och $z-w$ |
| c) | $ 2z+w$ |
[redigera] Övning 3.3:3
Rita in följande mängder i det komplexa talplanet
| a) | $0\le \mbox{Im}\, z \le 3$ | b) | $0 \le \mbox{Re} \, z \le \mbox{Im}\, z \le 1$ |
| c) | $ |z|=2$ | ||
| d) | $|z-1-i|=3$ | e) | $ \mbox{Re}\, z = i + \bar z$ |
</div>
[redigera] Övning 3.3:4
Givet de komplexa talen $z=2+i , \, w=2+3i$ och $u=-1-2i$. Markera följande tal i det komplexa talplanet
| a) | $z$ och $w$ | b) | $z+u$ och $z-w$ |
| c) | $ 2z+w$ | d) | $z-\overline{w} +u$ |
[redigera] Övning 3.3:5
Givet de komplexa talen $z=2+i , \, w=2+3i$ och $u=-1-2i$. Markera följande tal i det komplexa talplanet
| a) | $z$ och $w$ | b) | $z+u$ och $z-w$ |
| c) | $ 2z+w$ | d) | $z-\overline{w} +u$ |
[redigera] Övning 3.3:6
Givet de komplexa talen $z=2+i , \, w=2+3i$ och $u=-1-2i$. Markera följande tal i det komplexa talplanet
| a) | $z$ och $w$ | b) | $z+u$ och $z-w$ |
| c) | $ 2z+w$ | d) | $z-\overline{w} +u$ |
[redigera] Övning 3.3:7
De komplexa talen $1+i, 3+2i$ och $3i$ bildar i det komplexa talplanet tre hörn i en kvadrat. Bestäm kvadratens fjärde hörn.

