2.2 Övningar

Sommarmatte 2

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 5 juni 2007 kl. 06.29 (redigera)
KTH.SE:u1rp004j (Diskussion | bidrag)
(Övning 2.2:1)
← Gå till föregående ändring
Versionen från 5 juni 2007 kl. 06.30 (redigera) (ogör)
KTH.SE:u1rp004j (Diskussion | bidrag)
(Övning 2.2:1)
Gå till nästa ändring →
Rad 9: Rad 9:
<tr align="left" valign="top"> <tr align="left" valign="top">
<td class="ntext">b)</td> <td class="ntext">b)</td>
-<td class="ntext" width="100%">$\displaystyle \int (x^2+3)^5x \, dx$ genom att använda substitution $u=x^2+3$</td>+<td class="ntext" width="100%">$\displaystyle \int (x^2+3)^5x \, dx$ genom att använda substitution $u=x^2+3$</td>
</tr> </tr>
<tr align="left" valign="top"> <tr align="left" valign="top">
<td class="ntext">c)</td> <td class="ntext">c)</td>
-<td class="ntext" width="100%">$\displaystyle \int x^2 e^{x^3} \, dx$genom att använda substitution $u=x^3$</td>+<td class="ntext" width="100%">$\displaystyle \int x^2 e^{x^3} \, dx$ genom att använda substitution $u=x^3$</td>
</tr> </tr>
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>

Versionen från 5 juni 2007 kl. 06.30

Innehåll

Övning 2.2:1

Beräkna integralerna

a) $\displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}$ genom att använda substitution $u=3x-1$
b) $\displaystyle \int (x^2+3)^5x \, dx$ genom att använda substitution $u=x^2+3$
c) $\displaystyle \int x^2 e^{x^3} \, dx$ genom att använda substitution $u=x^3$

Övning 2.2:2

Beräkna integralerna
a) $\displaystyle\int_{0}^{2} (x^2+3x^3)\, dx$ b) $\displaystyle\int_{-1}^{2} (x-2)(x+1)\, dx$
c) $ \displaystyle\int_{4}^{9} (\sqrt{x} - \displaystyle\frac{1}{\sqrt{x}})\, dx$ d) $\displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx$

Övning 2.2:3

Beräkna integralerna
a) $\displaystyle\int \sin x\, dx$ b) $\displaystyle\int 2\sin x \cos x\, dx$
c) $ \displaystyle\int e^{2x}(e^x+1)\, dx$ d) $\displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx$

Övning 2.2:4

Beräkna integralerna
a) $\displaystyle\int \sin x\, dx$ b) $\displaystyle\int 2\sin x \cos x\, dx$
c) $ \displaystyle\int e^{2x}(e^x+1)\, dx$ d) $\displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx$
Personliga verktyg