3.4 Övningar

Sommarmatte 2

(Skillnad mellan versioner)
Hoppa till: navigering, sök

KTH.SE:u1rp004j (Diskussion | bidrag)
(Ny sida: ==Övning 3.4:1== <div class="ovning">Tolka integralerna som areor och bestäm deras värde <table width="100%" cellspacing="10px"> <tr align="left"> <td class="ntext">a)</td> <td class="nt...)
Gå till nästa ändring →

Versionen från 5 juni 2007 kl. 06.53

Innehåll

[redigera] Övning 3.4:1

Tolka integralerna som areor och bestäm deras värde
a) $\displaystyle\frac{x^2-1}{x-1}$ b) $\displaystyle\frac{x^2}{x+1}$ c) $\displaystyle \frac{x^3+a^3}{x+a}$ d) $\displaystyle\frac{x^3 +x+2}{x+1}$
e) $\displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}$

[redigera] Övning 3.4:2

De komplexa talen $1+i, 3+2i$ och $3i$ bildar i det komplexa talplanet tre hörn i en kvadrat. Bestäm kvadratens fjärde hörn.

[redigera] Övning 3.4:3

De komplexa talen $1+i, 3+2i$ och $3i$ bildar i det komplexa talplanet tre hörn i en kvadrat. Bestäm kvadratens fjärde hörn.

[redigera] Övning 3.4:4

De komplexa talen $1+i, 3+2i$ och $3i$ bildar i det komplexa talplanet tre hörn i en kvadrat. Bestäm kvadratens fjärde hörn.

[redigera] Övning 3.4:5

De komplexa talen $1+i, 3+2i$ och $3i$ bildar i det komplexa talplanet tre hörn i en kvadrat. Bestäm kvadratens fjärde hörn.

[redigera] Övning 3.5:6

De komplexa talen $1+i, 3+2i$ och $3i$ bildar i det komplexa talplanet tre hörn i en kvadrat. Bestäm kvadratens fjärde hörn.

[redigera] Övning 2.5:7

Tolka integralerna som areor och bestäm deras värde
a) $\displaystyle\int_{-1}^{2} 5\, dx$ b) $\displaystyle\int_{0}^{1} (2x+1)\, dx$
Personliga verktyg