Övn 1

Sommarmatte 2

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 25 juni 2007 kl. 08.55 (redigera)
KTH.SE:u1xsetv1 (Diskussion | bidrag)
(Övning 1.1:3)
← Gå till föregående ändring
Versionen från 25 juni 2007 kl. 08.56 (redigera) (ogör)
KTH.SE:u1xsetv1 (Diskussion | bidrag)
(Övning 1.1:4)
Gå till nästa ändring →
Rad 102: Rad 102:
</div> </div>
-<div class=NavFrame style="CLEAR: both">+<div class="svar">
-<div class=NavHead>Facit&nbsp;</div>+
-<div class=NavContent>+
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">
Rad 113: Rad 111:
<tr><td height="5px"/></tr> <tr><td height="5px"/></tr>
</table> </table>
-</div> 
-</div> 
- 
-<div class=NavFrame style="CLEAR: both"> 
-<div class=NavHead>L&ouml;sning&nbsp;</div> 
-<div class=NavContent> 
-<table width="100%"> 
-<tr> 
-<td align="center"> 
-[[Bild:1_1_4-1(3).gif]]<br\>[[Bild:1_1_4-2(3).gif]]<br\>[[Bild:1_1_4-3(3).gif]] 
-</td> 
-</tr> 
-</table> 
-</div> 
</div> </div>

Versionen från 25 juni 2007 kl. 08.56

Övning 1.1:1

Grafen till $f(x)$ är ritad i figuren. BILD

a) Vilket tecken har $f'(-4)$ respektive $f'(1)$?
b) För vilka $x$-värden är $f'(x)=0$?
c) I vilket eller vilka intervall är $f'(x)$ negativ?
a) $f'(-4)>0, \,\,\,\, f'(1)<0$
b) $x=-3$ och $x=2$
c) $-3\le x \le 2$

Övning 1.1:2

Bestäm $f'(x)$ om

a) $f(x) = x^2 -3x +1$ b) $f(x)=\cos x -\sin x$ c) $f(x)= e^x-\ln x$
d) $f(x)=\sqrt{x}$ e) $f(x) = (x^2-1)^2$ f) $f(x)= \cos (x+\pi/3)$
a) $f'(x)=2x-3$
b) $f'(x)=-\sin x -\cos x$
c) $f'(x)=e^x-\displaystyle\frac{1}{x}$
d) $f'(x)=\displaystyle\frac{1}{2}x^{-1/2}=\frac{1}{2\sqrt x}$
e) $f'(x)=4x(x^2-1)$
f) $f'(x)=-\sin \left(x+\frac{\pi}{3}\right)$

Övning 1.1:3

En liten boll som släpps från höjden $h=10$m ovanför marken vid tidpunkten $t=0$, har vid tiden $t$ (mätt i sekunder) höjden $h(t)=10-\displaystyle\frac{9,\!82}{2}\,t^2$. Vilken fart har bollen när den slår i backen?

$14{,}0\,$ m/s

Övning 1.1:4

Bestäm ekvationen för tangenten och normalen till kurvan $y=x^2$ i punkten $(1,1)$.

Tangentens ekvation: $\ y=2x-1$

Normalens ekvation: $\ y=-\displaystyle\frac{1}{2}x+\frac{3}{2}$

Övning 1.1:5

Bestäm alla punkter på kurvan $y=-x^2$ som har en tangent som går genom punkten $(1,1)$.

Personliga verktyg