Övn 1

Sommarmatte 2

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 25 juni 2007 kl. 08.56 (redigera)
KTH.SE:u1xsetv1 (Diskussion | bidrag)
(Övning 1.1:5)
← Gå till föregående ändring
Versionen från 25 juni 2007 kl. 08.56 (redigera) (ogör)
KTH.SE:u1xsetv1 (Diskussion | bidrag)
(Övning 1.1:5)
Gå till nästa ändring →
Rad 118: Rad 118:
</div> </div>
-<div class="svar">>+<div class="svar">
<table width="100%" cellspacing="10px"> <table width="100%" cellspacing="10px">
<tr align="left"> <tr align="left">

Versionen från 25 juni 2007 kl. 08.56

Övning 1.1:1

Grafen till $f(x)$ är ritad i figuren. BILD

a) Vilket tecken har $f'(-4)$ respektive $f'(1)$?
b) För vilka $x$-värden är $f'(x)=0$?
c) I vilket eller vilka intervall är $f'(x)$ negativ?
a) $f'(-4)>0, \,\,\,\, f'(1)<0$
b) $x=-3$ och $x=2$
c) $-3\le x \le 2$

Övning 1.1:2

Bestäm $f'(x)$ om

a) $f(x) = x^2 -3x +1$ b) $f(x)=\cos x -\sin x$ c) $f(x)= e^x-\ln x$
d) $f(x)=\sqrt{x}$ e) $f(x) = (x^2-1)^2$ f) $f(x)= \cos (x+\pi/3)$
a) $f'(x)=2x-3$
b) $f'(x)=-\sin x -\cos x$
c) $f'(x)=e^x-\displaystyle\frac{1}{x}$
d) $f'(x)=\displaystyle\frac{1}{2}x^{-1/2}=\frac{1}{2\sqrt x}$
e) $f'(x)=4x(x^2-1)$
f) $f'(x)=-\sin \left(x+\frac{\pi}{3}\right)$

Övning 1.1:3

En liten boll som släpps från höjden $h=10$m ovanför marken vid tidpunkten $t=0$, har vid tiden $t$ (mätt i sekunder) höjden $h(t)=10-\displaystyle\frac{9,\!82}{2}\,t^2$. Vilken fart har bollen när den slår i backen?

$14{,}0\,$ m/s

Övning 1.1:4

Bestäm ekvationen för tangenten och normalen till kurvan $y=x^2$ i punkten $(1,1)$.

Tangentens ekvation: $\ y=2x-1$

Normalens ekvation: $\ y=-\displaystyle\frac{1}{2}x+\frac{3}{2}$

Övning 1.1:5

Bestäm alla punkter på kurvan $y=-x^2$ som har en tangent som går genom punkten $(1,1)$.

$\bigl(1-\sqrt2, -3+2\sqrt2\bigr)\,$ och $\,\bigl(1+\sqrt2, -3-2\sqrt2\bigr)$
Personliga verktyg