De Moivres formel
Räknereglerna $\ \arg (zw) = \arg z + \arg w\ $ och $\ |\,zw\,| = |\,z\,|\cdot|\,w\,|\ $ betyder att
$$\biggl\{\eqalign{&\arg (z\cdot z) = \arg z + \arg z \cr &|\,z\cdot z\,| = |\,z\,|\cdot|\,z\,|}\qquad\biggl\{\eqalign{&\arg z^3 = 3 \arg z \cr &|\,z^3\,| = |\,z\,|^3}\qquad\text{o.s.v.}$$
För ett godtyckligt tal $\,z=r\,(\cos \alpha +i\,\sin \alpha)\,$ har vi därför följande samband
$$z^n = \bigl(r\,(\cos \alpha +i\sin \alpha)\bigr)^n = r^n\,(\cos n\alpha +i\,\sin n\alpha)\,\mbox{.}$$
Om $\,|\,z\,|=1\,$, (dvs. $\,z\,$ ligger på enhetscirkeln) gäller speciellt
$$(\cos \alpha +i\,\sin \alpha)^n = \cos n\alpha +i\,\sin n\alpha\,\mbox{,}$$
vilket brukar kallas de Moivres formel. Denna relation är mycket användbar när det gäller att härleda trigonometriska identiteter och beräkna rötter och potenser av komplexa tal.
Exempel 1
Om $\ z=\displaystyle\frac{1+i}{\sqrt2}\,$, beräkna $\,z^3\,$ och $\,z^{100}\,$.
Skriver vi $\,z\,$ i polär form $\ \ \displaystyle z= \frac{1}{\sqrt2} + \frac{i}{\sqrt2} = 1\cdot \Bigl(\cos \frac{\pi}{4} + i\sin \frac{\pi}{4}\Bigr)\ \ $ så ger de Moivres formel oss att
$$\eqalign{z^3 &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^3 = \cos\frac{3\pi}{4} + i\,\sin\frac{3\pi}{4} = -\frac{1}{\sqrt2} + \frac{1}{\sqrt2}\,i = \frac{-1+i}{\sqrt2}\,\mbox{,}\cr z^{100} &= \Bigl( \cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)^{100} = \cos\frac{100\pi}{4} + i\,\sin\frac{100\pi}{4}\vphantom{\Biggl(}\cr &= \cos 25\pi + i\,\sin 25\pi = \cos \pi + i\,\sin \pi = -1\,\mbox{.}}$$
Exempel 2
På traditionellt sätt kan man med kvadreringsregeln utveckla
$$(\cos v + i\,\sin v)^2 = \cos^2\!v + i^2 \sin^2\!v + 2i \sin v \cos v = \cos^2\!v - \sin^2\!v + 2i \sin v \cos v$$
och med de Moivres formel få att
$$(\cos v + i \sin v)^2 = \cos 2v + i \sin 2v\,\mbox{.}$$
Om man identifierar real- respektive imaginärdel i de båda uttrycken får man de kända trigonometriska formlerna
$$\biggl\{\eqalign{\cos 2v &= \cos^2\!v - \sin^2\!v\,\mbox{,}\cr \sin 2v&= 2 \sin v \cos v\,\mbox{.}}$$
Exempel 3
Beräkna $\ \displaystyle\frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}}\,$.
Vi skriver talen $\,\sqrt{3}+i\,$, $\,1+i\sqrt{3}\,$ och $\,1+i\,$ i polär form
- $\quad\displaystyle\sqrt3 + i = 2\Bigl(\cos\frac{\pi}{6} + i\,\sin\frac{\pi}{6}\,\Bigr)\vphantom{\biggl(}\,$,
- $\quad\displaystyle 1+i\sqrt3 = 2\Bigl(\cos\frac{\pi}{3} + i\,\sin\frac{\pi}{3}\,\Bigr)\vphantom{\biggl(}\,$,
- $\quad\displaystyle 1+i = \sqrt2\,\Bigl(\cos\frac{\pi}{4} + i\,\sin\frac{\pi}{4}\,\Bigr)\vphantom{\biggl(}\,$.
Då får vi med de Moivres formel att
$$\frac{(\sqrt3 + i)^{14}}{(1+i\sqrt3\,)^7(1+i)^{10}} = \frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin \frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}}{\displaystyle 2^7\Bigl(\cos \frac{7\pi}{3} + i\,\sin\frac{7\pi}{3}\,\Bigr) \cdot (\sqrt{2}\,)^{10}\Bigl(\cos\frac{10\pi}{4} + i\,\sin\frac{10\pi}{4}\,\Bigr)\vphantom{\biggl(}}$$
och detta uttryck kan förenklas genom att utföra multiplikationen och divisionen i polär form
$$\eqalign{\frac{\displaystyle 2^{14}\Bigl(\cos\frac{14\pi}{6} + i\,\sin\frac{14\pi}{6}\,\Bigr)\vphantom{\biggl(}} {\displaystyle 2^{12}\Bigl(\cos\frac{29\pi}{6} + i\,\sin\frac{29\pi}{6}\,\Bigr)\vphantom{\biggl(}} &= 2^2 \Bigl(\cos\Bigl( -\frac{15\pi}{6}\,\Bigr) + i\,\sin\Bigl( -\frac{15\pi}{6}\,\Bigr)\,\Bigr)\cr &= 4\Bigl(\cos \Bigl( -\frac{\pi}{2}\,\Bigr) + i\,\sin\Bigl( -\frac{\pi}{2}\,\Bigr)\,\Bigr) = -4i\,\mbox{.}}$$
Binomiska ekvationer
Ett komplext tal $\,z\,$ kallas en n:te rot av det komplexa talet $\,w\,$ om
Ovanstående samband kan också ses som en ekvation där $\,z\,$ är den obekante, och en sådan ekvation kallas en binomisk ekvation. Lösningarna ges av att skriva båda leden i polär form och jämföra belopp och argument.
För ett givet tal $\,w=|\,w\,|\,(\cos \theta + i\,\sin \theta)\,$ ansätter man det sökta talet $\,z=r\,(\cos \alpha + i\, \sin \alpha)$ och den binomiska ekvationen blir
$$r^{\,n}\,(\cos n\alpha + i \sin n\alpha) =|w|\,(\cos \theta + i \sin \theta)\,\mbox{,}$$
där de Moivres formel använts i vänsterledet. För belopp och argument måste nu gälla
$$\biggl\{\eqalign{r^{\,n} &= |w|\,\mbox{,}\cr n\alpha &= \theta + k\cdot 2\pi\,\mbox{.}}$$
Observera att vi lägger till en multipler av $\,2\pi\,$ för att få med alla värden på argumentet som anger samma riktning som $\,\theta\,$. Man får då att
$$\biggl\{\eqalign{ r&={\textstyle\sqrt[\scriptstyle n]{|w|}}\cr \alpha&= (\theta + 2k\pi)/n\,, \quad k=0, \pm 1, \pm 2, \ldots}$$
Detta ger ett värde på $\,r\,$, men oändligt många värden på $\,\alpha\,$. Trots detta blir det inte oändligt många lösningar. Från $\,k = 0\,$ till $\,k = n - 1\,$ får man olika argument för $\,z\,$ och därmed olika lägen för $\,z\,$ i det komplexa talplanet. För övriga värden på $\,k\,$ kommer man pga. periodiciteten hos sinus och cosinus tillbaka till dessa lägen och får alltså inga nya lösningar.
Detta resonemang visar att ekvationen $\,z^n=w\,$ har exakt $\,n\,$ rötter.
Anm. Observera att rötternas olika argument ligger $\,2\pi/n\,$ ifrån varandra, vilket gör att rötterna ligger jämnt fördelade på en cirkel med radien $\,\sqrt[\scriptstyle n]{|w|}\,$ och bildar hörn i en regelbunden n-hörning.
Exempel 4
Lös den binomiska ekvationen $\ z^4= 16\,i\,$.
Skriv $\,z\,$ och $\,16\,i\,$ i polär form
- $\quad z=r\,(\cos \alpha + i\,\sin \alpha)\,$,
- $\quad\displaystyle 16\,i= 16\Bigl(\cos\frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr)\vphantom{\biggl(}$.
Då ger ekvationen $\ z^4=16\,i\ $ att
$$r^4\,(\cos 4\alpha + i\,\sin 4\alpha) = 16\Bigl(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\,\Bigr)\,\mbox{.}$$
När vi identifierar belopp och argument i båda led fås att
$$\biggl\{\eqalign{r^4&=16 \cr 4\alpha &=\pi/2 + k\cdot 2\pi}\qquad\text{d.v.s.}\qquad\biggl\{\eqalign{r&=\sqrt[\scriptstyle 4]{16}= 2 \cr \alpha &= \pi/8 + k\pi/2\,,\quad k=0,1,2,3}$$
Lösningarna till ekvationen är alltså
$$\left\{\eqalign{\displaystyle z_1&= 2\Bigl(\cos \frac{\pi}{8} + i\,\sin\frac{\pi}{8}\,\Bigr)\cr
\displaystyle z_2 &= 2\Bigl(\cos\frac{5\pi}{8} + i\,\sin\frac{5\pi}{8}\,\Bigr)\vphantom{\biggl(}\cr
\displaystyle z_3 &= 2\Bigl(\cos\frac{9\pi}{8} + i\,\sin\frac{9\pi}{8}\,\Bigr)\vphantom{\biggl(}\cr
\displaystyle z_4 &= 2\Bigl(\cos\frac{13\pi}{8} + i\,\sin\frac{13\pi}{8}\,\Bigr)}\right.$$
Exponentialform av komplexa tal
Om vi behandlar $\,i\,$ likvärdigt med ett reellt tal och betraktar ett komplext tal $\,z\,$ som en funktion av $\,\alpha\,$ (och $\,r\,$ är en konstant),
$$f(\alpha) = r\,(\cos \alpha + i\,\sin \alpha)$$
så får vi efter derivering
$$\eqalign{f^{\,\prime}(\alpha) &= -r\sin \alpha + r\,i\,\cos \alpha =r\,i^2 \sin \alpha + r\,i\,\cos \alpha = i\,r\,(\cos \alpha + i\,\sin \alpha) = i\,f(\alpha)\cr f^{\,\prime\prime} (\alpha) &= - r\,\cos \alpha - r\,i\,\sin \alpha = i^2\,r\,(\cos \alpha + i\,\sin \alpha) = i^2\, f(\alpha)\cr &\text{o.s.v.}}$$
Den enda reella funktion med dessa egenskaper är $\,f(x)= e^{\,kx}\,$, vilket motiverar definitionen
$$e^{\,i\alpha} = \cos \alpha + i\,\sin \alpha\,\mbox{.}$$
Denna definition visar sig vara en helt naturlig generalisering av exponentialfunktionen för reella tal. Om man sätter $\,z=a+ib\,$ så får man
$$e^{\,z} = e^{\,a+ib} = e^{\,a} \cdot e^{\,ib} = e^{\,a}(\cos b + i\,\sin b)\,\mbox{.}$$
Definitionen av $\,e^{\,z}\,$ kan uppfattas som ett bekvämt skrivsätt för den polära formen av ett komplext tal, eftersom $\,z=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{\,i\alpha}\,$.
Exempel 5
För ett reellt tal $\,z\,$ överensstämmer definitionen med den reella exponentialfunktionen, eftersom $\,z=a +0 \cdot i\,$ ger att
$$e^{\,z} = e^{\,a+0\cdot i} = e^a (\cos 0 + i \sin 0) = e^a \cdot 1 = e^a\,\mbox{.}$$
Exempel 6
Ytterligare en indikation på det naturliga i ovanstående definition ges av sambandet
$$\bigl(e^{\,i\alpha}\bigr)^n = (\cos \alpha + i \sin \alpha)^n = \cos n\alpha + i \sin n \alpha = e^{\,in\alpha}\,\mbox{,}$$
vilket visar att de Moivres formel egentligen är identisk med en redan känd potenslag,
$$\left(a^x\right)^y = a^{x\,y}\,\mbox{.}$$
Exempel 7
Ur definitionen ovan kan man erhålla sambandet
$$e^{\pi\,i} = \cos \pi + i \sin \pi = -1$$
vilket knyter samman de tal som brukar räknas som de mest grundläggande inom matematiken: $\,e\,$, $\,\pi\,$, $\,i\,$ och 1.
Detta samband betraktas av många som det vackraste inom matematiken och upptäcktes av Euler i början av 1700-talet.
Exempel 8
Lös ekvationen $\ (z+i)^3 = -8i$.
Sätt $\,w = z + i\,$. Vi får då den binomiska ekvationen $\ w^3=-8i\,$. Till att börja med skriver vi om $\,w\,$ och $\,-8i\,$ i polär form
- $\quad w=r\,(\cos \alpha + i\,\sin \alpha) = r\,e^{i\alpha}$
- $\quad\displaystyle -8i = 8\Bigl(\cos \frac{3\pi}{2} + i\,\sin\frac{3\pi}{2}\,\Bigr) = 8\,e^{3\pi i/2}\vphantom{\biggl(}$
Ekvationen blir i polär form $\ r^3e^{3\alpha i}=8\,e^{3\pi i/2}\ $ och identifierar vi belopp och argument i båda led har vi att
$$\biggl\{\eqalign{ r^3 &= 8\cr 3\alpha &= 3\pi/2+2k\pi}\qquad\Leftrightarrow\qquad\biggl\{\eqalign{r&=\sqrt[\scriptstyle 3]{8}\cr \alpha&= \pi/2+2k\pi/3\,,\quad k=0,1,2}$$
Rötterna till ekvationen blir därmed
- $\quad\displaystyle w_1 = 2\,e^{\pi i/2} = 2\Bigl(\cos \frac{\pi}{2} + i\,\sin\frac{\pi}{2}\,\Bigr) = 2i\quad\vphantom{\biggl(}$ d.v.s. $\,z_1 = 2i-i=i\,$.
- $\quad\displaystyle w_2 = 2\,e^{7\pi i/6} = 2\Bigl(\cos\frac{7\pi}{6} + i\,\sin\frac{7\pi}{6}\,\Bigr) = -\sqrt{3}-i\quad\vphantom{\Biggl(}$ d.v.s. $\,z_2 = - \sqrt{3}-2i\,$.
- $\quad\displaystyle w_3 = 2\,e^{11\pi i/6} = 2\Bigl(\cos\frac{11\pi}{6} + i\,\sin\frac{11\pi}{6}\,\Bigr) = \sqrt{3}-i\quad\vphantom{\biggl(}$ d.v.s. $\,z_3 = \sqrt{3}-2i\,$.
Exempel 9
Lös ekvationen $\ z^2 = \overline{z}\,$.
Om $\,z=a+ib\,$ har $\,|\,z\,|=r\,$ och $\,\arg z = \alpha\,$ så gäller att $\,\overline{z}= a-ib\,$ har $\,|\,\overline{z}\,|=r\,$ och $\,\arg \overline{z} = - \alpha\,$. Därför gäller att $\,z=r\,e^{i\alpha}\,$ och $\,\overline{z} = r\,e^{-i\alpha}\,$. Ekvationen kan därmed skrivas
$$(r\,e^{i\alpha})^2 = r\,e^{-i\alpha}\,\qquad\text{eller}\qquad r^2 e^{2i\alpha}= r\,e^{-i\alpha}\,\mbox{,}$$
vilket är ekvivalent med $\ r\,e^{3i\alpha} = 1\,$, som ger efter identifikation av belopp och argument
$$\biggl\{\eqalign{r&=1\cr 3\alpha &= 0 + 2k\pi}\qquad\Leftrightarrow\qquad\biggl\{\eqalign{r&=1\cr \alpha &= 2k\pi/3\,\mbox{,}\quad k=0,1,2}$$
Lösningarna är
- $\quad z_1 = e^0 = 1$
- $\quad\displaystyle z_2 = e^{2\pi i/ 3} = \cos\frac{2\pi}{3} + i\,\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt3}{2}\,i\vphantom{\Biggl(}$
- $\quad\displaystyle z_3 = e^{4\pi i/ 3} = \cos\frac{4\pi}{3} + i\,\sin\frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt3}{2}\,i$
© Copyright 2007, math.se
|
|