1.3 Övningar

Sommarmatte 2

Hoppa till: navigering, sök

Övning 1.3:1

Bestäm kritiska punkter, terasspunkter, lokala extrempunkter och globala extrempunkter. Ange också de intervall där funktionen är strängt växande respektive strängt avtagande.

a) BILD b) BILD
c) BILD d) BILD



Övning 1.3:2

Bestäm lokala extrempunkter och skissera funktionsgrafen till

a) $f(x)= x^2 -2x+1$ b) $f(x)=2+3x-x^2$
c) $f(x)= 2x^3+3x^2-12x+1$ d) $f(x)=x^3-9x^2+30x-15$


Övning 1.3:3

Bestäm kritiska punkter, terasspunkter, lokala extrempunkter och globala extrempunkter. Ange också de intervall där funktionen är strängt växande respektive strängt avtagande.

a) $f(x)=-x^4+8x^3-18x^2$ b) $f(x)=e^{-3x} +5x$
c) $f(x)= x\ln x -9$ d) $f(x)=\displaystyle\frac{1+x^2}{1+x^4}$
e) $f(x)=(x^2-x-1)e^x$ då $-3\le x\le 3$


Personliga verktyg