From Förberedande kurs i matematik 1
Because tanv=sinvcosv, the left-hand side can be written using cosv as the common denominator,
| 1cosv−tanv=1cosv−sinvcosv=cosv1−sinv.
|
|
Now, we observe that if we multiply top and bottom with 1+sinv, the denominator will contain the denominator of the right-hand side as a factor and, in addition, the numerator can be simplified to give 1−sin2v=cos2v, using the difference of two squares,
| cosv1−sinv=cosv1−sinv 1+sinv1+sinv=1−sin2vcosv(1+sinv)=cos2vcosv(1+sinv). |
|
Eliminating cosv then gives the answer,
| cos2vcosv(1+sinv)=cosv1+sinv.
|
|