Processing Math: 41%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

2.1 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m
Line 55: Line 55:
===Exercise 2.1:3===
===Exercise 2.1:3===
<div class="ovning">
<div class="ovning">
-
Factorize and simplify as much as possible
+
Factorise and simplify as much as possible
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)

Revision as of 12:21, 7 August 2008

       Theory          Exercises      


Exercise 2.1:1

Expand

a) 3x(x1) b) (1+xx2)xy c) x2(4y2)
d) x3y2y11xy+1  e) (x7)2 f) (5+4y)2
g) (y23x3)2 h) (5x3+3x5)2


Exercise 2.1:2

Expand

a) (x4)(x5)3x(2x3) b) (15x)(1+15x)3(25x)(2+5x)
c) (3x+4)2(3x2)(3x8) d) (3x2+2)(3x22)(9x4+4)
e) (a+b)2+(ab)2

Exercise 2.1:3

Factorise and simplify as much as possible

a) x236 b) 5x220 c) x2+6x+9
d) \displaystyle x^2-10x+25 e) \displaystyle 18x-2x^3 f) \displaystyle 16x^2+8x+1

Exercise 2.1:4

Determine the coefficients in front of \displaystyle \,x\, and \displaystyle \,x^2\ when the following expressiona are expanded out.

a) \displaystyle (x+2)(3x^2-x+5)
b) \displaystyle (1+x+x^2+x^3)(2-x+x^2+x^4)
c) \displaystyle (x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4)

Exercise 2.1:5

Simplify as much as possible

a) \displaystyle \displaystyle \frac{1}{x-x^2}-\displaystyle \frac{1}{x} b) \displaystyle \displaystyle \frac{1}{y^2-2y}-\displaystyle \frac{2}{y^2-4}
c) \displaystyle \displaystyle \frac{(3x^2-12)(x^2-1)}{(x+1)(x+2)} d) \displaystyle \displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}

Exercise 2.1:6

Simplify as much as possible

a) \displaystyle \left(x-y+\displaystyle\frac{x^2}{y-x}\right) \displaystyle \left(\displaystyle\frac{y}{2x-y}-1\right) b) \displaystyle \displaystyle \frac{x}{x-2}+\displaystyle \frac{x}{x+3}-2
c) \displaystyle \displaystyle \frac{2a+b}{a^2-ab}-\frac{2}{a-b} d) \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}

Exercise 2.1:7

Simplify the following fractions by writing them as an expression having a common fraction sign

a) \displaystyle \displaystyle \frac{2}{x+3}-\frac{2}{x+5} b) \displaystyle x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} c) \displaystyle \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}

Exercise 2.1:8

Simplify the following fractions by writing them as an expression having a common fraction sign

a) \displaystyle \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } b) \displaystyle \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} c) \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}