Processing Math: 48%
3.3 Exercises
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Robot: Automated text replacement (-Svar +Answer)) |
m (Robot: Automated text replacement (-Lösning +Solution)) |
||
Line 22: | Line 22: | ||
|width="50%" | <math>\displaystyle \frac{1}{10^x}=0\textrm{.}000\,1</math> | |width="50%" | <math>\displaystyle \frac{1}{10^x}=0\textrm{.}000\,1</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 3.3:1|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 3.3:1|Solution a|Solution 3.3:1a|Solution b|Solution 3.3:1b|Solution c|Solution 3.3:1c|Solution d|Solution 3.3:1d}} |
===Exercise 3.3:2=== | ===Exercise 3.3:2=== | ||
Line 46: | Line 46: | ||
|width="25%" | <math>\lg{\displaystyle \frac{1}{10^2}}</math> | |width="25%" | <math>\lg{\displaystyle \frac{1}{10^2}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 3.3:2|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 3.3:2|Solution a|Solution 3.3:2a|Solution b|Solution 3.3:2b|Solution c|Solution 3.3:2c|Solution d|Solution 3.3:2d|Solution e|Solution 3.3:2e|Solution f|Solution 3.3:2f|Solution g|Solution 3.3:2g|Solution h|Solution 3.3:2h}} |
===Exercise 3.3:3=== | ===Exercise 3.3:3=== | ||
Line 71: | Line 71: | ||
|width="33%" | <math>\log_a{\bigl(a^2\sqrt{a}\,\bigr)}</math> | |width="33%" | <math>\log_a{\bigl(a^2\sqrt{a}\,\bigr)}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 3.3:3|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 3.3:3|Solution a|Solution 3.3:3a|Solution b|Solution 3.3:3b|Solution c|Solution 3.3:3c|Solution d|Solution 3.3:3d|Solution e|Solution 3.3:3e|Solution f|Solution 3.3:3f|Solution g|Solution 3.3:3g|Solution h|Solution 3.3:3h}} |
===Exercise 3.3:4=== | ===Exercise 3.3:4=== | ||
Line 84: | Line 84: | ||
|width="33%" | <math>\lg{27^{1/3}}+\displaystyle \frac{\lg{3}}{2}+\lg{\displaystyle \frac{1}{9}}</math> | |width="33%" | <math>\lg{27^{1/3}}+\displaystyle \frac{\lg{3}}{2}+\lg{\displaystyle \frac{1}{9}}</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 3.3:4|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 3.3:4|Solution a|Solution 3.3:4a|Solution b|Solution 3.3:4b|Solution c|Solution 3.3:4c}} |
===Exercise 3.3:5=== | ===Exercise 3.3:5=== | ||
Line 104: | Line 104: | ||
|width="33%" | <math>\left(e^{\ln{e}}\right)^2</math> | |width="33%" | <math>\left(e^{\ln{e}}\right)^2</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 3.3:5|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 3.3:5|Solution a|Solution 3.3:5a|Solution b|Solution 3.3:5b|Solution c|Solution 3.3:5c|Solution d|Solution 3.3:5d|Solution e|Solution 3.3:5e|Solution f|Solution 3.3:5f}} |
===Exercise 3.3:6=== | ===Exercise 3.3:6=== | ||
Line 123: | Line 123: | ||
||{{LOGCALCULATOR}} | ||{{LOGCALCULATOR}} | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Answer|Answer 3.3:6|Solution a| | + | </div>{{#NAVCONTENT:Answer|Answer 3.3:6|Solution a|Solution 3.3:6a|Solution b|Solution 3.3:6b|Solution c|Solution 3.3:6c}} |
Revision as of 11:21, 9 September 2008
Theory | Exercises |
Exercise 3.3:1
What is
a) | | b) | |
c) | | d) | |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 3.3:2
Calculate
a) | | b) | | c) | | d) | |
e) | | f) | | g) | | h) | |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f | Solution g | Solution h
Exercise 3.3:3
Calculate
a) | | b) | | c) | |
d) | \displaystyle \log_3{\left(9\cdot3^{1/3}\right)} | e) | \displaystyle 2^{\log_{\scriptstyle2}{4}} | f) | \displaystyle \log_2{4}+\log_2{\displaystyle \frac{1}{16}} |
g) | \displaystyle \log_3{12}-\log_3{4} | h) | \displaystyle \log_a{\bigl(a^2\sqrt{a}\,\bigr)} |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f | Solution g | Solution h
Exercise 3.3:4
Simplify
a) | \displaystyle \lg{50}-\lg{5} | b) | \displaystyle \lg{23}+\lg{\displaystyle \frac{1}{23}} | c) | \displaystyle \lg{27^{1/3}}+\displaystyle \frac{\lg{3}}{2}+\lg{\displaystyle \frac{1}{9}} |
Answer | Solution a | Solution b | Solution c
Exercise 3.3:5
Simplify
a) | \displaystyle \ln{e^3}+\ln{e^2} | b) | \displaystyle \ln{8}-\ln{4}-\ln{2} | c) | \displaystyle (\ln{1})\cdot e^2 |
d) | \displaystyle \ln{e}-1 | e) | \displaystyle \ln{\displaystyle \frac{1}{e^2}} | f) | \displaystyle \left(e^{\ln{e}}\right)^2 |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 3.3:6
Use the calculator on the right to calculate the following to three decimal places. (The button LN signifies the natural logarithm with base e):
|
Answer | Solution a | Solution b | Solution c