Processing Math: Done
Solution 1.2:2d
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Robot: Automated text replacement (-[[Bild: +[[Image:)) |
m |
||
| (4 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | If we divide up the denominators into their smallest possible integer factors, |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>\begin{align} |
| + | 45&=5\cdot 9=5\cdot 3\cdot 3\,, \\ | ||
| + | 75&=3\cdot 25=3\cdot 5\cdot 5\,, \\ | ||
| + | \end{align}</math>}} | ||
| + | |||
| + | the expression can be written as | ||
| + | |||
| + | {{Displayed math||<math>\frac{2}{3\cdot 3\cdot 5}+\frac{1}{3\cdot 5\cdot 5}</math>}} | ||
| + | |||
| + | and then we see that the denominators have <math>3\cdot 5</math> as a common factor. Therefore, if we multiply the top and bottom of the first fraction by 5 | ||
| + | and the second by 3, the result is the lowest possible denominator | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | \frac{2}{3\cdot 3\cdot 5}\cdot \frac{5}{5}+\frac{1}{3\cdot 5\cdot 5}\cdot | ||
| + | \frac{3}{3} &=\frac{2}{3\cdot 3\cdot 5\cdot 5} | ||
| + | +\frac{3}{3\cdot 5\cdot 5\cdot 3}\\[10pt] | ||
| + | &= \frac{10}{225}+\frac{3}{225}\,\textrm{.}\\ | ||
| + | \end{align}</math>}} | ||
| + | |||
| + | The lowest common denominator is 225. | ||
Current revision
If we divide up the denominators into their smallest possible integer factors,
9=5 3 3 =3 25=3 5 5![]() |
the expression can be written as
3 5+13 5 5 |
and then we see that the denominators have
5
3 5 55+13 5 5 33=23 3 5 5+33 5 5 3=10225+3225. |
The lowest common denominator is 225.

