Processing Math: 96%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

3.3 Exercises

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (20:49, 28 October 2008) (edit) (undo)
 
(27 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Mall:Ej vald flik|[[3.3 Logaritmer|Teori]]}}
+
{{Not selected tab|[[3.3 Logarithms|Theory]]}}
-
{{Mall:Vald flik|[[3.3 Övningar|Övningar]]}}
+
{{Selected tab|[[3.3 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
 
+
===Exercise 3.3:1===
-
===Övning 3.3:1===
+
<div class="ovning">
<div class="ovning">
-
Best&auml;m <math>\,x\,</math> om
+
Solve the following equations for <math>x</math>.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
|width="50%" | <math>10^x=1\,000</math>
|width="50%" | <math>10^x=1\,000</math>
|b)
|b)
-
|width="50%" | <math>10^x=0{,}1</math>
+
|width="50%" | <math>10^x=0\textrm{.}1</math>
|-
|-
|c)
|c)
|width="50%" | <math>\displaystyle \frac{1}{10^x}=100</math>
|width="50%" | <math>\displaystyle \frac{1}{10^x}=100</math>
|d)
|d)
-
|width="50%" | <math>\displaystyle \frac{1}{10^x}=0{,}000\,1</math>
+
|width="50%" | <math>\displaystyle \frac{1}{10^x}=0\textrm{.}000\,1</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 3.3:1|Lösning a|Lösning 3.3:1a|Lösning b|Lösning 3.3:1b|Lösning c|Lösning 3.3:1c|Lösning d|Lösning 3.3:1d}}
+
</div>{{#NAVCONTENT:Answer|Answer 3.3:1|Solution a|Solution 3.3:1a|Solution b|Solution 3.3:1b|Solution c|Solution 3.3:1c|Solution d|Solution 3.3:1d}}
-
{{LOGCALCULATOR}}
+
===Exercise 3.3:2===
 +
<div class="ovning">
 +
Calculate
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="25%" | <math>\lg{ 0\textrm{.}1}</math>
 +
|b)
 +
|width="25%" | <math>\lg{ 10\,000}</math>
 +
|c)
 +
|width="25%" | <math>\lg {0\textrm{.}001}</math>
 +
|d)
 +
|width="25%" | <math>\lg {1}</math>
 +
|-
 +
|e)
 +
|width="25%" | <math>10^{\lg{2}}</math>
 +
|f)
 +
|width="25%" | <math>\lg{10^3}</math>
 +
|g)
 +
|width="25%" | <math>10^{-\lg{0\textrm{.}1}}</math>
 +
|h)
 +
|width="25%" | <math>\lg{\displaystyle \frac{1}{10^2}}</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 3.3:2|Solution a|Solution 3.3:2a|Solution b|Solution 3.3:2b|Solution c|Solution 3.3:2c|Solution d|Solution 3.3:2d|Solution e|Solution 3.3:2e|Solution f|Solution 3.3:2f|Solution g|Solution 3.3:2g|Solution h|Solution 3.3:2h}}
 +
 
 +
===Exercise 3.3:3===
 +
<div class="ovning">
 +
Calculate
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="33%" | <math>\log_2{8}</math>
 +
|b)
 +
|width="33%" | <math>\log_9{\displaystyle \frac{1}{3}}</math>
 +
|c)
 +
|width="33%" | <math>\log_2{0\textrm{.}125}</math>
 +
|-
 +
|d)
 +
|width="33%" | <math>\log_3{\left(9\cdot3^{1/3}\right)}</math>
 +
|e)
 +
|width="33%" | <math>2^{\log_{\scriptstyle2}{4}}</math>
 +
|f)
 +
|width="33%" | <math>\log_2{4}+\log_2{\displaystyle \frac{1}{16}}</math>
 +
|-
 +
|g)
 +
|width="33%" | <math>\log_3{12}-\log_3{4}</math>
 +
|h)
 +
|width="33%" | <math>\log_a{\bigl(a^2\sqrt{a}\,\bigr)}</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 3.3:3|Solution a|Solution 3.3:3a|Solution b|Solution 3.3:3b|Solution c|Solution 3.3:3c|Solution d|Solution 3.3:3d|Solution e|Solution 3.3:3e|Solution f|Solution 3.3:3f|Solution g|Solution 3.3:3g|Solution h|Solution 3.3:3h}}
 +
 
 +
===Exercise 3.3:4===
 +
<div class="ovning">
 +
Simplify
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="33%" | <math>\lg{50}-\lg{5}</math>
 +
|b)
 +
|width="33%" | <math>\lg{23}+\lg{\displaystyle \frac{1}{23}}</math>
 +
|c)
 +
|width="33%" | <math>\lg{27^{1/3}}+\displaystyle \frac{\lg{3}}{2}+\lg{\displaystyle \frac{1}{9}}</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 3.3:4|Solution a|Solution 3.3:4a|Solution b|Solution 3.3:4b|Solution c|Solution 3.3:4c}}
 +
 
 +
===Exercise 3.3:5===
 +
<div class="ovning">
 +
Simplify
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="33%" | <math>\ln{e^3}+\ln{e^2}</math>
 +
|b)
 +
|width="33%" | <math>\ln{8}-\ln{4}-\ln{2}</math>
 +
|c)
 +
|width="33%" | <math>(\ln{1})\cdot e^2</math>
 +
|-
 +
|d)
 +
|width="33%" | <math>\ln{e}-1</math>
 +
|e)
 +
|width="33%" | <math>\ln{\displaystyle \frac{1}{e^2}}</math>
 +
|f)
 +
|width="33%" | <math>\left(e^{\ln{e}}\right)^2</math>
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 3.3:5|Solution a|Solution 3.3:5a|Solution b|Solution 3.3:5b|Solution c|Solution 3.3:5c|Solution d|Solution 3.3:5d|Solution e|Solution 3.3:5e|Solution f|Solution 3.3:5f}}
 +
 
 +
===Exercise 3.3:6===
 +
<div class="ovning">
 +
{| width="100%"
 +
| width="100%" |
 +
Use the calculator on the right to calculate the following to three decimal places. The button <tt>LN</tt> signifies the natural logarithm with base ''e''.
 +
{| width="100%" cellspacing="10px"
 +
|a)
 +
|width="100%" | <math>\log_3{4}</math>
 +
|-
 +
|b)
 +
|width="100%" | <math>\lg{46}</math>
 +
|-
 +
|c)
 +
|width="100%" | <math>\log_3{\log_2{(3^{118})}}</math>
 +
|}
 +
||{{LOGCALCULATOR}}
 +
|}
 +
</div>{{#NAVCONTENT:Answer|Answer 3.3:6|Solution a|Solution 3.3:6a|Solution b|Solution 3.3:6b|Solution c|Solution 3.3:6c}}

Current revision

       Theory          Exercises      


Exercise 3.3:1

Solve the following equations for x.

a) 10x=1000 b) 10x=0.1
c) 110x=100 d) 110x=0.0001

Exercise 3.3:2

Calculate

a) lg0.1 b) lg10000 c) lg0.001 d) lg1
e) 10lg2 f) lg103 g) 10lg0.1 h) lg1102

Exercise 3.3:3

Calculate

a) log28 b) log931 c) log20.125
d) log39313  e) 2log24 f) log24+log2116
g) log312log34 h) logaa2a 

Exercise 3.3:4

Simplify

a) lg50lg5 b) lg23+lg123 c) lg2713+2lg3+lg91

Exercise 3.3:5

Simplify

a) lne3+lne2 b) ln8ln4ln2 c) (ln1)e2
d) lne1 e) ln1e2 f) elne2 

Exercise 3.3:6

Use the calculator on the right to calculate the following to three decimal places. The button LN signifies the natural logarithm with base e.

a) log34
b) lg46
c) \displaystyle \log_3{\log_2{(3^{118})}}