Dag 14

Linjär algebra

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Versionen från 7 juni 2007 kl. 10.24 (redigera)
Vcrispin (Diskussion | bidrag)

← Gå till föregående ändring
Versionen från 7 juni 2007 kl. 10.28 (redigera) (ogör)
Vcrispin (Diskussion | bidrag)

Gå till nästa ändring →
Rad 3: Rad 3:
Detta avsnitt handlar västenligen om ekvationen $k_1{\bf v}_1+k_2{\bf v}_2+\ldots +k_r{\bf v}_r={\bf 0}$ för en uppsätning av vektorer ${\bf v}_i$. Läs igenom definitionen och de efterförljande exemplen. Lösningen $k_1=k_2=\ldots =k_r$ kallas den ''triviala'' lösningen i litteraturen. Märk väl att ekvationen har antingen en lösning, den triviala, eller oändligt många. I Exempel 1 ges den icke-triviala lösningen $k_1=3, k_2=1, k_3=-1$, men ekvationen har även lösningen $k_1=-6, k_2=-2, k_3=2$ och $k_1=3\pi, k_2=\pi, k_3=-\pi$ och alla oändligt många på formen $k_1=3t, k_2=t, k_3=-t$, där $t$ är ett godtyckligt reellt tal. Detta avsnitt handlar västenligen om ekvationen $k_1{\bf v}_1+k_2{\bf v}_2+\ldots +k_r{\bf v}_r={\bf 0}$ för en uppsätning av vektorer ${\bf v}_i$. Läs igenom definitionen och de efterförljande exemplen. Lösningen $k_1=k_2=\ldots =k_r$ kallas den ''triviala'' lösningen i litteraturen. Märk väl att ekvationen har antingen en lösning, den triviala, eller oändligt många. I Exempel 1 ges den icke-triviala lösningen $k_1=3, k_2=1, k_3=-1$, men ekvationen har även lösningen $k_1=-6, k_2=-2, k_3=2$ och $k_1=3\pi, k_2=\pi, k_3=-\pi$ och alla oändligt många på formen $k_1=3t, k_2=t, k_3=-t$, där $t$ är ett godtyckligt reellt tal.
 +
 +Sats 5.3.1 är ett mycket nyttigt resultat. Hoppas inte över beviset, som ger en god insikt om begreppet linjärt oberoende. Ett vanligt missförstånd är att tro att om någon av vektorerna inte kan skrivas som linjär kombination av de övriga, så blir hela uppsättningen linjärt oberoende. Som det står i sats 5.3.1(b) ska ''ingen'' av vektorerna kunna skrivas som linjär kombination av de övriga för att linjärt oberoende skall gälla.

Versionen från 7 juni 2007 kl. 10.28

5.3 Linjärt oberoende

Detta avsnitt handlar västenligen om ekvationen $k_1{\bf v}_1+k_2{\bf v}_2+\ldots +k_r{\bf v}_r={\bf 0}$ för en uppsätning av vektorer ${\bf v}_i$. Läs igenom definitionen och de efterförljande exemplen. Lösningen $k_1=k_2=\ldots =k_r$ kallas den triviala lösningen i litteraturen. Märk väl att ekvationen har antingen en lösning, den triviala, eller oändligt många. I Exempel 1 ges den icke-triviala lösningen $k_1=3, k_2=1, k_3=-1$, men ekvationen har även lösningen $k_1=-6, k_2=-2, k_3=2$ och $k_1=3\pi, k_2=\pi, k_3=-\pi$ och alla oändligt många på formen $k_1=3t, k_2=t, k_3=-t$, där $t$ är ett godtyckligt reellt tal.

Sats 5.3.1 är ett mycket nyttigt resultat. Hoppas inte över beviset, som ger en god insikt om begreppet linjärt oberoende. Ett vanligt missförstånd är att tro att om någon av vektorerna inte kan skrivas som linjär kombination av de övriga, så blir hela uppsättningen linjärt oberoende. Som det står i sats 5.3.1(b) ska ingen av vektorerna kunna skrivas som linjär kombination av de övriga för att linjärt oberoende skall gälla.


Gör följande övningar i första hand:

  • 1a, 2abcd, 3ac, 5ab, 7

Har du tid över kan du göra även:

  • 6ab, 15
Den här artikeln är hämtad från http://wiki.math.se/wikis/5b4046_0701/index.php/Dag_14
Personliga verktyg