Dag 10

Envariabelanalys

Version från den 7 juni 2007 kl. 14.56; Tanjab (Diskussion | bidrag)
(skillnad) ← Äldre version | Nuvarande version (skillnad) | Nyare version → (skillnad)
Hoppa till: navigering, sök

[redigera] EXTREMVÄRDESPROBLEM OCH LINJÄRA APPROXIMATIONER

Idag kommer vi bland annat att lösa olika praktiska problem av min/max-karaktär. Minns problemet med ölburken - här finner du det som exempel 4 i avsnitt 4.5. Det finns också intressanta tillämpningar inom andra viktiga områden som ekonomi och biologi mm. Hitta gärna på ett eget problem och lös!

Tangenten till en graf $f$ i en given punkt $a$ är den bästa räta linje som beskriver $f$:s uppförande i $a$. Där har tangentlinjen som bekant ekvationen $y(x)=f(a)+f'(a)(x-a)$ och kallas för lineariseringen av $f$ kring $a$. Denna utgör en linjär approximation av $f$ för x-värden nära $a$. Vi har alltså approximerat $f$ med ett förstagradspolynom (en rät linje). Denna metod, som tas upp i 4.7, kan användas när $f(a)$ och $f'(a)$ är kända. Man kan erhålla ännu bättre approximationer av $f$ för $x$ nära $a$ genom att använda polynom av högre grad vars (högre ordningens) derivator sammanfaller med $f$:s (högre ordningens) derivator i $a$ - under förutsättning att de existerar givetvis. Dessa (optimala) polynom av högre grad som används för att approximera $f$ nära en given punkt kallas Taylorpolynom och ju högre gradtal man väljer desto bättre blir approximationen. Mer om detta i ett senare avsnitt. För allmänbildningens skull bör man också känna till att man kan approximera funktioner med trigonometriska funktioner - sk Fourieranalys.

4.5 I avsnittet behandlas max/min-problem där man själv måste formulera problemen matematiskt och därefter lösa dem. Innan du börjar lösa uppgifterna till detta avsnitt är det lämpligt att du läser igenom exempel 1-5.

4.7 Approximationer används då det är svårt att få fram det exakta funktionsvärdet i en punkt. Med linjär approximation avses approximationen av en funktionsgraf med dess tangentlinje, dvs vi kommer att utifrån kunskap om värdet av en funktion och dess derivata i en viss punkt finna approximativa funktionsvärden i ett område nära punkten. Läs igenom hela detta avsnitt.

Övninsuppgifter:

  • 4.5: 1 3 7 21.
  • 4.7: 1 3 5 7 15.

Om du har lust och tid över kan du göra följande övningsuppgifter som är snäppet svårare:

  • 4.5: 11 19 37 40 41.
  • 4.7: 11 13 17 31.

Observera att det finns flera blandade uppgifter i repetitionssyfte för kap. 4 under rubriken "Chapter Review" sid. 270-273.

Den här artikeln är hämtad från http://wiki.math.se/wikis/5b4047_0701/index.php/Dag_10
Personliga verktyg