Dag 11
Envariabelanalys
EXTREMVÄRDESPROBLEM OCH LINJÄRA APPROXIMATIONER
Idag kommer vi att lösa olika praktiska problem av min/max-karaktär. Minns problemet med ölburken - här finner du det som exempel 4 i avsnitt 4.5! Det finns också intressanta problem av min/max-typ inom andra viktiga områden som ekonomi och biologi mm. Hitta gärna på ett eget problem och lös!
Tangenten till en graf f i en given punkt a är den bästa $\textit{räta linje}$ som beskriver f:s uppförande i a.
4.5 I avsnittet behandlas "ostrukturerade" max/min-problem där man själv måste formulera problemen matematiskt och därefter lösa dem. Innan du börjar lösa uppgifterna till detta avsnitt är det lämpligt att du läser igenom exempel 1-5.
4.7 Approximationer används då det är svårt att få fram det $\textit{exakta}$ funktionsvärdet i en punkt. Här kommer vi att utifrån kunskap om värdet av en funktion och dess derivata i en viss punkt försöka finna approximativa funktionsvärden i ett område nära punkten. Med linjär approximation avses approximationen av en funktionsgraf med dess tangentlinje. Läs igenom hela detta avsnitt.
Övninsuppgifter:
- 4.5: 1 3 7 21.
- 4.7: 1 3 5 7 15.
Om du har lust och tid över kan du göra följande övningsuppgifter som är snäppet svårare:
- 4.5: 11 19 37 40 41.
- 4.7: 11 13 17 31.

