Versionen från 25 juni 2007 kl. 08.08 (redigera) KTH.SE:u1xsetv1 (Diskussion | bidrag) ← Gå till föregående ändring |
Nuvarande version (30 juni 2007 kl. 15.48) (redigera) (ogör) KTH.SE:u1m1gion (Diskussion | bidrag) |
(28 mellanliggande versioner visas inte.) |
Rad 187: |
Rad 187: |
| </div> | | </div> |
| | | |
- | <div class=NavFrame style="CLEAR: both"> | + | <div class="svar"> |
- | <div class=NavHead>Facit </div> | + | |
- | <div class=NavContent> | + | |
- | Facit till alla delfrågor<br \> | + | |
| <table width="100%" cellspacing="10px"> | | <table width="100%" cellspacing="10px"> |
| <tr align="left"> | | <tr align="left"> |
| <td class="ntext">a)</td> | | <td class="ntext">a)</td> |
- | <td class="ntext" width="50%">BILD</td> | + | <td class="ntext" width="50%">En cirkel med radie 3 och medelpunkt i origo.</td> |
| <td class="ntext">b)</td> | | <td class="ntext">b)</td> |
- | <td class="ntext" width="50%">BILD</td> | + | <td class="ntext" width="50%">En cirkel med radie \sqrt 3 och medelpunkt i punkten (1, 2).</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
| <td class="ntext">c)</td> | | <td class="ntext">c)</td> |
- | <td class="ntext" width="50%">BILD</td> | + | <td class="ntext" width="50%">En cirkel med radie \frac{1}{3}\sqrt 10 och medelpunkt i punkten (1/3, -7/3).</td> |
| </tr> | | </tr> |
| <tr><td height="5px"/></tr> | | <tr><td height="5px"/></tr> |
| </table> | | </table> |
- | </div> | |
- | </div> | |
- | | |
- | <div class=NavFrame style="CLEAR: both"> | |
- | <div class=NavHead>Lösning a) </div> | |
- | <div class=NavContent> | |
- | Lösning till delfråga a) | |
- | <table width="100%"> | |
- | <tr> | |
- | <td align="center"> | |
- | [[Bild:4_1_6a.gif]] | |
- | </td> | |
- | </tr> | |
- | </table> | |
- | | |
- | </div> | |
- | </div> | |
- | | |
- | <div class=NavFrame style="CLEAR: both"> | |
- | <div class=NavHead>Lösning b) </DIV> | |
- | <div class=NavContent> | |
- | Lösning till delfråga b) | |
- | <table width="100%"> | |
- | <tr> | |
- | <td align="center"> | |
- | [[Bild:4_1_6b.gif]] | |
- | </td> | |
- | </tr> | |
- | </table> | |
- | </div> | |
- | </div> | |
- | | |
- | <div class=NavFrame style="CLEAR: both"> | |
- | <div class=NavHead>Lösning c) </DIV> | |
- | <div class=NavContent> | |
- | Lösning till delfråga c) | |
- | <table width="100%"> | |
- | <tr> | |
- | <td align="center"> | |
- | [[Bild:4_1_6c-1(2).gif]] | |
- | </td> | |
- | </tr> | |
- | <tr> | |
- | <td align="center"> | |
- | [[Bild:4_1_6c-2(2).gif]] | |
- | </td> | |
- | </tr> | |
- | </table> | |
- | </div> | |
| </div> | | </div> |
| | | |
Rad 275: |
Rad 223: |
| </div> | | </div> |
| | | |
- | <div class=NavFrame style="CLEAR: both"> | + | <div class="svar"> |
- | <div class=NavHead>Facit </div> | + | |
- | <div class=NavContent> | + | |
- | Facit till alla delfrågor<br \> | + | |
| <table width="100%" cellspacing="10px"> | | <table width="100%" cellspacing="10px"> |
| <tr align="left"> | | <tr align="left"> |
| <td class="ntext">a)</td> | | <td class="ntext">a)</td> |
- | <td class="ntext" width="50%">BILD</td> | + | <td class="ntext" width="50%">En cirkel med medelpunkt (-1, 1) och radie \sqrt 3.</td> |
| <td class="ntext">b)</td> | | <td class="ntext">b)</td> |
- | <td class="ntext" width="50%">BILD</td> | + | <td class="ntext" width="50%">En cirkel med medelpunkt (0, -2) och radie 2. </td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
| <td class="ntext">c)</td> | | <td class="ntext">c)</td> |
- | <td class="ntext" width="50%">BILD</td> | + | <td class="ntext" width="50%">En cirkel med medelpunkt (1, -3) och radie \sqrt 7.</td> |
| + | </tr> |
| + | <tr align="left"> |
| <td class="ntext">d)</td> | | <td class="ntext">d)</td> |
- | <td class="ntext" width="50%">BILD</td> | + | <td class="ntext" width="50%">Endast punkten (1, -1). </td> |
| </tr> | | </tr> |
| + | |
| <tr><td height="5px"/></tr> | | <tr><td height="5px"/></tr> |
| </table> | | </table> |
- | </div> | |
- | </div> | |
- | | |
- | <div class=NavFrame style="CLEAR: both"> | |
- | <div class=NavHead>Lösning a) </div> | |
- | <div class=NavContent> | |
- | Lösning till delfråga a) | |
- | <table width="100%"> | |
- | <tr> | |
- | <td align="center"> | |
- | [[Bild:4_1_7a-1(2).gif]] | |
- | </td> | |
- | </tr> | |
- | <tr> | |
- | <td align="center"> | |
- | [[Bild:4_1_7a-2(2).gif]] | |
- | </td> | |
- | </tr> | |
- | </table> | |
- | | |
- | </div> | |
- | </div> | |
- | | |
- | <div class=NavFrame style="CLEAR: both"> | |
- | <div class=NavHead>Lösning b) </DIV> | |
- | <div class=NavContent> | |
- | Lösning till delfråga b) | |
- | <table width="100%"> | |
- | <tr> | |
- | <td align="center"> | |
- | [[Bild:4_1_7b.gif]] | |
- | </td> | |
- | </tr> | |
- | </table> | |
- | </div> | |
- | </div> | |
- | | |
- | <div class=NavFrame style="CLEAR: both"> | |
- | <div class=NavHead>Lösning c) </DIV> | |
- | <div class=NavContent> | |
- | Lösning till delfråga c) | |
- | <table width="100%"> | |
- | <tr> | |
- | <td align="center"> | |
- | [[Bild:4_1_7c.gif]] | |
- | </td> | |
- | </tr> | |
- | </table> | |
- | </div> | |
- | </div> | |
- | | |
- | <div class=NavFrame style="CLEAR: both"> | |
- | <div class=NavHead>Lösning d) </DIV> | |
- | <div class=NavContent> | |
- | Lösning till delfråga d) | |
- | <table width="100%"> | |
- | <tr> | |
- | <td align="center"> | |
- | [[Bild:4_1_7d.gif]] | |
- | </td> | |
- | </tr> | |
- | </table> | |
- | </div> | |
| </div> | | </div> |
| | | |
Rad 397: |
Rad 282: |
| <table width="100%" cellspacing="10px"> | | <table width="100%" cellspacing="10px"> |
| <tr><td height="5px"/></tr> | | <tr><td height="5px"/></tr> |
- | <tr align="center"> | + | <tr> |
- | <td class="ntext" width="100%">BILD</td> | + | <td align="center"> |
- | </tr> | + | [[Bild:Uppg_4_1_10.gif]] |
- | <tr><td height="5px"/></tr> | + | </td> |
| + | </tr><tr><td height="5px"/></tr> |
| </table> | | </table> |
| + | |
| | | |
| </div> | | </div> |
Rad 695: |
Rad 582: |
| </div> | | </div> |
| | | |
- | <div class=NavFrame style="CLEAR: both"> | + | <div class="svar"> |
- | <div class=NavHead>Facit </div> | + | |
- | <div class=NavContent> | + | |
| <table width="100%" cellspacing="10px"> | | <table width="100%" cellspacing="10px"> |
| <tr align="left"> | | <tr align="left"> |
Rad 705: |
Rad 590: |
| </table> | | </table> |
| </div> | | </div> |
| + | |
| + | ==Övning 4.2:9== |
| + | <div class="ovning"> |
| + | Bilvägen från ''A'' till ''B'' består av tre rätlinjiga delar ''AP'', ''PQ'' och ''QB'', vilka är 4,0 km, 12,0 km respektive 5,0 km. De i figuren markerade vinklarna vid ''P'' och ''Q'' är 30° respektive 90°. Beräkna avståndet fågelvägen från ''A'' till ''B''. (Uppgiften är hämtad ur Centrala provet i matematik, november 1976, men aningen modifierad.) |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="center"> |
| + | <td class="ntext" width="100%">[[Bild:O4_2_9.gif]]</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| </div> | | </div> |
| | | |
- | <div class=NavFrame style="CLEAR: both"> | + | <div class="svar"> |
- | <div class=NavHead>Lösning </div> | + | <table width="100%" cellspacing="10px"> |
- | <div class=NavContent> | + | <tr align="left"> |
- | <table width="100%"> | + | <td class="ntext" width="100%">Avståndet är $\ \sqrt{205-48\sqrt{3}} \approx 11{,}0$ km.</td> |
- | <tr> | + | |
- | <td align="center"> | + | |
- | [[Bild:4_2_8-1(2).gif]] | + | |
- | </td> | + | |
| </tr> | | </tr> |
- | <tr> | + | <tr><td height="5px"/></tr> |
- | <td align="center"> | + | </table> |
- | [[Bild:4_2_8-2(2).gif]] | + | </div> |
| + | |
| + | ==Övning 4.3:1== |
| + | <div class="ovning"> |
| + | Bestäm de vinklar \,v\, mellan \,\displaystyle \frac{\pi}{2}\, och \,2\pi\, som uppfyller |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="33%">\cos{v}=\cos{\displaystyle \frac{\pi}{5}}</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="33%">\sin{v}=\sin{\displaystyle \frac{\pi}{7}}</td> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="33%">\tan{v}=\tan{\displaystyle \frac{2\pi}{7}}</td> |
| + | </tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="33%">v = \displaystyle \frac{9\pi}{5}</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="33%">v = \displaystyle \frac{6\pi}{7}</td> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="33%">v = \displaystyle \frac{9\pi}{7}</td> |
| + | </tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.3:2== |
| + | <div class="ovning"> |
| + | Bestäm de vinklar \,v\, mellan 0 och \,\pi\, som uppfyller |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">\cos{v} = \cos{\displaystyle \frac{3\pi}{2}}</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">\cos{v} = \cos{ \displaystyle \frac{7\pi}{5}}</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">v=\displaystyle \frac{\pi}{2}</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">v=\displaystyle \frac{3\pi}{5}</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.3:3== |
| + | <div class="ovning"> |
| + | Antag att $\,-\displaystyle \frac{\pi}{2} \leq v \leq \displaystyle \frac{\pi}{2}\, och att \,\sin{v} = a\,. Uttryck med hjälp av \,a$ |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">\sin{(-v)}</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">\sin{(\pi-v)}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">\cos{v}</td> |
| + | <td class="ntext">d)</td> |
| + | <td class="ntext" width="50%">$\sin{\left(\displaystyle \frac{\pi}{2}-v\right)}$</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">e)</td> |
| + | <td class="ntext" width="50%">\cos{\left( \displaystyle \frac{\pi}{2} + v\right)}</td> |
| + | <td class="ntext">f)</td> |
| + | <td class="ntext" width="50%">\sin{\left( \displaystyle \frac{\pi}{3} + v \right)}</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">-a</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">a</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">\sqrt{1-a^2}</td> |
| + | <td class="ntext">d)</td> |
| + | <td class="ntext" width="50%">\sqrt{1-a^2}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">e)</td> |
| + | <td class="ntext" width="50%">-a</td> |
| + | <td class="ntext">f)</td> |
| + | <td class="ntext" width="50%">\displaystyle \frac{\sqrt{3}}{2}\sqrt{1-a^2}+\displaystyle \frac{1}{2}\cdot a </td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.3:4== |
| + | <div class="ovning"> |
| + | Antag att \,0 \leq v \leq \pi\, och att \,\cos{v}=b\,. Uttryck med hjälp av \,b\, |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">\sin^2{v}</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">\sin{v}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">\sin{2v}</td> |
| + | <td class="ntext">d)</td> |
| + | <td class="ntext" width="50%">\cos{2v}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">e)</td> |
| + | <td class="ntext" width="50%">\sin{\left( v+\displaystyle \frac{\pi}{4} \right)}</td> |
| + | <td class="ntext">f)</td> |
| + | <td class="ntext" width="50%">\cos{\left( v-\displaystyle \frac{\pi}{3} \right)}</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">1-b^2</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">\sqrt{1-b^2}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">2b\sqrt{1-b^2}</td> |
| + | <td class="ntext">d)</td> |
| + | <td class="ntext" width="50%">2b^2-1</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">e)</td> |
| + | <td class="ntext" width="50%">\sqrt{1-b^2}\cdot\displaystyle \frac{1}{\sqrt{2}} + b\cdot \displaystyle \frac{1}{\sqrt{2}} </td> |
| + | <td class="ntext">f)</td> |
| + | <td class="ntext" width="50%">b\cdot\displaystyle \frac{1}{2}+\sqrt{1-b^2}\cdot\displaystyle \frac{\sqrt{3}}{2}</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.3:5== |
| + | <div class="ovning"> |
| + | För en spetsig vinkel \,v\, i en triangel gäller att \,\sin{v}=\displaystyle \frac{5}{7}\,. Bestäm \,\cos{v}\, och \,\tan{v}\,. |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext" width="100%">\cos{v}=\displaystyle \frac{2\sqrt{6}}{7}\quad och \quad\tan{v}=\displaystyle \frac{5}{2\sqrt{6}}\,.</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.3:6== |
| + | <div class="ovning"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left" valign="top"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="100%">Bestäm \ \sin{v}\ och \ \tan{v}\ om \ \cos{v}=\displaystyle \frac{3}{4}\ och \ \displaystyle \frac{3\pi}{2} \leq v \leq 2\pi\,.</td> |
| + | </tr> |
| + | <tr align="left" valign="top"> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="100%">Bestäm \ \cos{v}\ och \ \tan{v}\ om \ \sin{v}=\displaystyle \frac{3}{10}\ och \,v\, ligger i den andra kvadranten.</td> |
| + | </tr> |
| + | <tr align="left" valign="top"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="100%">Bestäm \ \sin{v}\ och \ \cos{v}\ om \ \tan{v}=3\ och \ \pi \leq v \leq \displaystyle \frac{3\pi}{2}\,.</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="100%">\sin{v}=-\displaystyle \frac{\sqrt{7}}{4}\quad och \quad\tan{v}=-\displaystyle \frac{\sqrt{7}}{3}\,.</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | <tr align="left"> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="100%">\cos{v}=-\displaystyle \frac{\sqrt{91}}{10}\quad och \quad\tan{v}=-\displaystyle \frac{3}{\sqrt{91}}\,.</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">\sin{v}=-\displaystyle \frac{3}{\sqrt{10}}\quad och \quad\cos{v}=-\displaystyle \frac{1}{\sqrt{10}}\,.</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.3:7== |
| + | <div class="ovning"> |
| + | Bestäm \ \sin{(x+y)}\ om |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="100%">\sin{x}=\displaystyle \frac{2}{3}\,, \ \sin{y}=\displaystyle \frac{1}{3}\ och \,x\,, \,y\, är vinklar i första kvadranten.</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="100%">\cos{x}=\displaystyle \frac{2}{5}\,, \ \cos{y}=\displaystyle \frac{3}{5}\ och \,x\,, \,y\, är vinklar i första kvadranten.</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="100%">\sin{(x+y)}=\displaystyle \frac{4\sqrt{2}+\sqrt{5}}{9}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="100%">\sin{(x+y)}=\displaystyle \frac{3\sqrt{21}+8}{25}</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.3:8== |
| + | <div class="ovning"> |
| + | Visa följande trigonometriska samband |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext>a)</td> |
| + | <td class="ntext width="100%">\tan^2v=\displaystyle\frac{\sin^2v}{1-\sin^2v}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext>b)</td> |
| + | <td class="ntext width="100%">\displaystyle \frac{1}{\cos v}-\tan v=\frac{\cos v}{1+\sin v}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext>c)</td> |
| + | <td class="ntext width="100%">\tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext>d)</td> |
| + | <td class="ntext width="100%">\displaystyle\frac{\cos (u+v)}{\cos u \cos v}= 1- \tan u \tan v</td> |
| + | </tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">Se lösningen i webmaterialet när |
| + | du loggat in till kursen</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.3:9== |
| + | <div class="ovning"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext> |
| + | Visa "Feynmans likhet" |
| + | \cos 20^\circ \cdot \cos 40^\circ \cdot \cos 80^\circ = \displaystyle\frac{1}{8}\,\mbox{.} |
| + | (Ledtråd: Använd formeln för dubbla vinkeln på \,\sin 160^\circ\,.) |
| </td> | | </td> |
| </tr> | | </tr> |
| </table> | | </table> |
| </div> | | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">Se lösningen i webmaterialet när |
| + | du loggat in till kursen</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| </div> | | </div> |
| | | |
- | ==Övning 4.2:9== | + | ==Övning 4.4:1== |
| <div class="ovning"> | | <div class="ovning"> |
- | Bilvägen från ''A'' till ''B'' består av tre rätlinjiga delar ''AP'', ''PQ'' och ''QB'', vilka är 4,0 km, 12,0 km respektive 5,0 km. De i figuren markerade vinklarna vid ''P'' och ''Q'' är 30° respektive 90°. Beräkna avståndet fågelvägen från ''A'' till ''B''. (Uppgiften är hämtad ur Centrala provet i matematik, november 1976, men aningen modifierad.) | + | För vilka vinklar $\,v\,$, där $\,0 \leq v\leq 2\pi\,$, gäller att |
| <table width="100%" cellspacing="10px"> | | <table width="100%" cellspacing="10px"> |
- | <tr align="center"> | + | <tr align="left"> |
- | <td class="ntext" width="100%">[[Bild:O4_2_9.gif]]</td> | + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">\sin{v}=\displaystyle \frac{1}{2}</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">\cos{v}=\displaystyle \frac{1}{2}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">\sin{v}=1</td> |
| + | <td class="ntext">d)</td> |
| + | <td class="ntext" width="50%">\tan{v}=1</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">e)</td> |
| + | <td class="ntext" width="50%">\cos{v}=2</td> |
| + | <td class="ntext">f)</td> |
| + | <td class="ntext" width="50%">\sin{v}=-\displaystyle \frac{1}{2}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">g)</td> |
| + | <td class="ntext" width="50%">\tan{v}=-\displaystyle \frac{1}{\sqrt{3}}</td> |
| </tr> | | </tr> |
| <tr><td height="5px"/></tr> | | <tr><td height="5px"/></tr> |
Rad 736: |
Rad 934: |
| </div> | | </div> |
| | | |
- | <div class=NavFrame style="CLEAR: both"> | + | <div class="svar"> |
- | <div class=NavHead>Facit </div> | + | |
- | <div class=NavContent> | + | |
| <table width="100%" cellspacing="10px"> | | <table width="100%" cellspacing="10px"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext" width="100%">Avståndet är $\ \sqrt{205-48\sqrt{3}} \approx 11{,}0$ km.</td> | + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">$\displaystyle v=\frac{\pi}{6}\,, \,\displaystyle v=\frac{5\pi}{6}$</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">$\displaystyle v=\frac{\pi}{3}\,, \,\displaystyle v=\frac{5\pi}{3}$</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">$\displaystyle v=\frac{\pi}{2}$</td> |
| + | <td class="ntext">d)</td> |
| + | <td class="ntext" width="50%">\displaystyle v=\frac{\pi}{4}\,, \,\displaystyle v=\frac{5\pi}{4}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">e)</td> |
| + | <td class="ntext" width="50%">lösning saknas</td> |
| + | <td class="ntext">f)</td> |
| + | <td class="ntext" width="50%">$\displaystyle v=\frac{11\pi}{6}\,, \,\displaystyle v=\frac{7\pi}{6}$</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">g)</td> |
| + | <td class="ntext" width="50%">\displaystyle v=\frac{5\pi}{6}\,, $\,\displaystyle v=\frac{11\pi}{6}$</td> |
| </tr> | | </tr> |
| <tr><td height="5px"/></tr> | | <tr><td height="5px"/></tr> |
| </table> | | </table> |
| </div> | | </div> |
| + | |
| + | ==Övning 4.4:2== |
| + | <div class="ovning"> |
| + | Lös ekvationen |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="33%">\sin{x}=\displaystyle \frac{\sqrt{3}}{2}</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="33%">\cos{x}=\displaystyle \frac{1}{2} </td> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="33%">\sin{x}=0</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">d)</td> |
| + | <td class="ntext" width="33%">\sin{5x}=\displaystyle \frac{1}{\sqrt{2}} </td> |
| + | <td class="ntext">e)</td> |
| + | <td class="ntext" width="33%">\sin{5x}=\displaystyle \frac{1}{2}</td> |
| + | <td class="ntext">f)</td> |
| + | <td class="ntext" width="33%">\cos{3x}=-\displaystyle\frac{1}{\sqrt{2}}</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| </div> | | </div> |
| | | |
- | <div class=NavFrame style="CLEAR: both"> | + | <div class="svar"> |
- | <div class=NavHead>Lösning </div> | + | <table width="100%" cellspacing="10px"> |
- | <div class=NavContent> | + | <tr align="left"> |
- | <table width="100%"> | + | <td class="ntext">a)</td> |
- | <tr> | + | <td class="ntext" width="33%"> |
- | <td align="center"> | + | $\left\{\eqalign{ |
- | [[Bild:4_2_9-1(3).gif]] | + | x&=\displaystyle\frac{\pi}{3}+2n\pi\cr |
| + | x&=\displaystyle\frac{2\pi}{3}+2n\pi } \right.$ |
| </td> | | </td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="33%"> |
| + | $\left\{\eqalign{ |
| + | x&=\displaystyle\frac{\pi}{3}+2n\pi\cr |
| + | x&=\displaystyle\frac{5\pi}{3}+2n\pi } \right.$ |
| + | </td> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="33%"> |
| + | x=n\pi</td> |
| </tr> | | </tr> |
- | <tr> | + | <tr align="left"> |
- | <td align="center"> | + | <td class="ntext">d)</td> |
- | [[Bild:4_2_9-2(3).gif]] | + | <td class="ntext" width="33%"> |
| + | $\left\{\eqalign{ |
| + | x&=\displaystyle\frac{\pi}{20}+\displaystyle\frac{2n\pi}{5}\cr |
| + | x&=\displaystyle\frac{3\pi}{20}+\displaystyle\frac{2n\pi}{5} } \right.$ |
| + | </td> |
| + | <td class="ntext">e)</td> |
| + | <td class="ntext" width="33%"> |
| + | $\left\{\eqalign{ |
| + | x&=\displaystyle\frac{\pi}{30}+\displaystyle\frac{2n\pi}{5}\cr |
| + | x&=\displaystyle\frac{\pi}{6}+\displaystyle\frac{2n\pi}{5}} \right.$ |
| + | </td> |
| + | <td class="ntext">f)</td> |
| + | <td class="ntext" width="33%"> |
| + | $\left\{\eqalign{ |
| + | x&=\displaystyle\frac{\pi}{4}+\displaystyle\frac{2n\pi}{3}\cr |
| + | x&=\displaystyle\frac{5\pi}{12}+\displaystyle\frac{2n\pi}{3}} \right.$ |
| </td> | | </td> |
| </tr> | | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.4:3== |
| + | <div class="ovning"> |
| + | Lös ekvationen |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">\cos{x}=\cos{\displaystyle \frac{\pi}{6}}</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">\sin{x}=\sin{\displaystyle \frac{\pi}{5}}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">\sin{(x+40^\circ)}=\sin{65^\circ}</td> |
| + | <td class="ntext">d)</td> |
| + | <td class="ntext" width="50%">\sin{3x}=\sin{15^\circ}</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{\eqalign{ |
| + | x&=\displaystyle\frac{\pi}{6}+2n\pi\cr |
| + | x&=\displaystyle\frac{11\pi}{6}+2n\pi |
| + | }\right.$ |
| + | </td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{\eqalign{ |
| + | x&=\displaystyle\frac{\pi}{5}+2n\pi\cr |
| + | x&=\displaystyle\frac{4\pi}{5}+2n\pi |
| + | }\right.$ |
| + | </td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{\eqalign{ |
| + | x&=25^\circ + n\cdot 360^\circ\cr |
| + | x&=75^\circ + n\cdot 360^\circ |
| + | }\right.$ |
| + | </td> |
| + | <td class="ntext">d)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{\eqalign{ |
| + | x&=5^\circ + n \cdot 120^\circ \cr |
| + | x&= 55^\circ + n \cdot 120^\circ |
| + | }\right.$ |
| + | </td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.4:4== |
| + | <div class="ovning"> |
| + | Bestäm de vinklar \,v\, i intervallet \,0^\circ \leq v \leq 360^\circ\, som uppfyller \ \cos{\left(2v+10^\circ\right)}=\cos{110^\circ}\,. |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellpadding="10px"> |
| <tr> | | <tr> |
- | <td align="center"> | + | <td align="left"> |
- | [[Bild:4_2_9-3(3).gif]] | + | v_1=50^\circ, \ \ v_2=120^\circ, \ \ v_3=230^\circ\ \ och \ \ v_4=300^\circ |
| </td> | | </td> |
| </tr> | | </tr> |
| </table> | | </table> |
| </div> | | </div> |
| + | |
| + | ==Övning 4.4:5== |
| + | <div class="ovning"> |
| + | Lös ekvationen |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">\sin{3x}=\sin{x}</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">\tan{x}=\tan{4x}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">\cos{5x}=\cos(x+\pi/5)</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{\eqalign{ |
| + | x&=n\pi\cr |
| + | x&=\displaystyle \frac{\pi}{4}+\displaystyle \frac{n\pi}{2} |
| + | }\right.$ |
| + | </td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">x=\displaystyle \frac{n\pi}{3}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{\eqalign{ |
| + | x&=\displaystyle \frac{\pi}{20}+\displaystyle \frac{n\pi}{2}\cr |
| + | x&=-\displaystyle \frac{\pi}{30}+\displaystyle \frac{n\pi}{3} |
| + | }\right.$ |
| + | </td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.4:6== |
| + | <div class="ovning"> |
| + | Lös ekvationen |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">\sin x\cdot \cos 3x = 2\sin x</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">\sqrt{2}\sin{x}\cos{x}=\cos{x}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">\sin 2x = -\sin x</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%"> |
| + | x=n\pi |
| + | </td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{\eqalign{ |
| + | x&=\displaystyle \frac{\pi}{4}+2n\pi\cr |
| + | x&=\displaystyle \frac{\pi}{2}+n\pi\cr |
| + | x&=\displaystyle \frac{3\pi}{4}+2n\pi}\right.$ |
| + | </td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{\eqalign{ |
| + | x&=\displaystyle \frac{2n\pi}{3}\cr |
| + | x&=\displaystyle \pi + 2n\pi\cr |
| + | }\right.$ |
| + | </td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.4:7== |
| + | <div class="ovning"> |
| + | Lös ekvationen |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">2\sin^2{x}+\sin{x}=1</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">2\sin^2{x}-3\cos{x}=0</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">\cos{3x}=\sin{4x}</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{ \matrix{ |
| + | x=\displaystyle \frac{\pi}{6}+2n\pi\cr |
| + | x=\displaystyle \frac{5\pi}{6}+2n\pi\cr |
| + | x=\displaystyle \frac{3\pi}{2}+2n\pi |
| + | }\right.$ |
| + | </td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">x=\pm \displaystyle \frac{\pi}{3} + 2n\pi </td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{ \matrix{ |
| + | x=\displaystyle \frac{\pi}{2}+2n\pi\cr |
| + | x=\displaystyle \frac{\pi}{14}+\displaystyle \frac{2n\pi}{7} |
| + | }\right.$ |
| + | </td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | ==Övning 4.4:8== |
| + | <div class="ovning"> |
| + | Lös ekvationen |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%">\sin{2x}=\sqrt{2}\cos{x}</td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">\sin{x}=\sqrt{3}\cos{x}</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%">\displaystyle \frac{1}{\cos^2{x}}=1-\tan{x}</td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| + | </div> |
| + | |
| + | <div class="svar"> |
| + | <table width="100%" cellspacing="10px"> |
| + | <tr align="left"> |
| + | <td class="ntext">a)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{\eqalign{ |
| + | x&=\displaystyle \frac{\pi}{4}+2n\pi\cr |
| + | x&=\displaystyle \frac{\pi}{2}+n\pi\cr |
| + | x&=\displaystyle \frac{3\pi}{4}+2n\pi |
| + | }\right.$ |
| + | </td> |
| + | <td class="ntext">b)</td> |
| + | <td class="ntext" width="50%">x=\displaystyle \frac{\pi}{3}+n\pi</td> |
| + | </tr> |
| + | <tr align="left"> |
| + | <td class="ntext">c)</td> |
| + | <td class="ntext" width="50%"> |
| + | $\left\{\eqalign{ |
| + | x&=n\pi\cr |
| + | x&=\displaystyle \frac{3\pi}{4}+n\pi |
| + | }\right.$ |
| + | </td> |
| + | </tr> |
| + | <tr><td height="5px"/></tr> |
| + | </table> |
| </div> | | </div> |