Versionen från 16 juli 2007 kl. 09.13 (redigera) KTH.SE:u1zpa8nw (Diskussion | bidrag)
← Gå till föregående ändring |
Versionen från 16 juli 2007 kl. 09.16 (redigera) (ogör) KTH.SE:u1zpa8nw (Diskussion | bidrag)
Gå till nästa ändring → |
Rad 4: |
Rad 4: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$-7$</td> | | <td class="ntext" width="50%">$-7$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$1$</td> | | <td class="ntext" width="50%">$1$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$11$</td> | | <td class="ntext" width="50%">$11$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$1$</td> | | <td class="ntext" width="50%">$1$</td> |
| </tr> | | </tr> |
Rad 23: |
Rad 23: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$0$</td> | | <td class="ntext" width="50%">$0$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$-1$</td> | | <td class="ntext" width="50%">$-1$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$-25$</td> | | <td class="ntext" width="50%">$-25$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$-19$</td> | | <td class="ntext" width="50%">$-19$</td> |
| </tr> | | </tr> |
Rad 43: |
Rad 43: |
| | | |
| <tr align="left" valign="top"> | | <tr align="left" valign="top"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">naturliga talen, heltalen, rationella talen</td> | | <td class="ntext" width="33%">naturliga talen, heltalen, rationella talen</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">heltalen, rationella talen</td> | | <td class="ntext" width="33%">heltalen, rationella talen</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">naturliga talen, heltalen, rationella talen</td> | | <td class="ntext" width="33%">naturliga talen, heltalen, rationella talen</td> |
| </tr> | | </tr> |
| <tr align="left" valign="top"> | | <tr align="left" valign="top"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">heltalen, rationella talen</td> | | <td class="ntext" width="33%">heltalen, rationella talen</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">heltalen, rationella talen</td> | | <td class="ntext" width="33%">heltalen, rationella talen</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="33%">naturliga talen, heltalen, rationella talen</td> | | <td class="ntext" width="33%">naturliga talen, heltalen, rationella talen</td> |
| </tr> | | </tr> |
| <tr align="left" valign="top"> | | <tr align="left" valign="top"> |
- | <td class="ntext">g)</td> | + | <td class="ntext">g) </td> |
| <td class="ntext" width="33%">rationella talen</td> | | <td class="ntext" width="33%">rationella talen</td> |
- | <td class="ntext">h)</td> | + | <td class="ntext">h) </td> |
| <td class="ntext" width="33%">naturliga talen, heltalen, rationella talen</td> | | <td class="ntext" width="33%">naturliga talen, heltalen, rationella talen</td> |
- | <td class="ntext">i)</td> | + | <td class="ntext">i) </td> |
| <td class="ntext" width="33%">irrationella talen</td> | | <td class="ntext" width="33%">irrationella talen</td> |
| </tr> | | </tr> |
| <tr align="left" valign="top"> | | <tr align="left" valign="top"> |
- | <td class="ntext">j)</td> | + | <td class="ntext">j) </td> |
| <td class="ntext" width="33%">naturliga talen, heltalen, rationella talen</td> | | <td class="ntext" width="33%">naturliga talen, heltalen, rationella talen</td> |
- | <td class="ntext">k)</td> | + | <td class="ntext">k) </td> |
| <td class="ntext" width="33%">irrationella talen</td> | | <td class="ntext" width="33%">irrationella talen</td> |
| <td class="ntext">l)</td> | | <td class="ntext">l)</td> |
Rad 82: |
Rad 82: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">$\displaystyle \frac{3}{5}<\frac{5}{3}<2<\frac{7}{3}$</td> | | <td class="ntext" width="100%">$\displaystyle \frac{3}{5}<\frac{5}{3}<2<\frac{7}{3}$</td> |
| </tr> | | </tr> |
| <tr> | | <tr> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$\displaystyle -\frac{1}{2}<-\frac{1}{3}<-\frac{3}{10}<-\frac{1}{5}$</td> | | <td class="ntext" width="100%">$\displaystyle -\frac{1}{2}<-\frac{1}{3}<-\frac{3}{10}<-\frac{1}{5}$</td> |
| </tr> | | </tr> |
| <tr> | | <tr> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="100%">$\displaystyle \frac{1}{2}<\frac{3}{5}<\frac{21}{34}<\frac{5}{8}<\frac{2}{3}$</td> | | <td class="ntext" width="100%">$\displaystyle \frac{1}{2}<\frac{3}{5}<\frac{21}{34}<\frac{5}{8}<\frac{2}{3}$</td> |
| </tr> | | </tr> |
Rad 101: |
Rad 101: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="25%">$1{,}167$</td> | | <td class="ntext" width="25%">$1{,}167$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="25%">$2{,}250$</td> | | <td class="ntext" width="25%">$2{,}250$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="25%">$0{,}286$</td> | | <td class="ntext" width="25%">$0{,}286$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="25%">$1{,}414$</td> | | <td class="ntext" width="25%">$1{,}414$</td> |
| </tr> | | </tr> |
Rad 118: |
Rad 118: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">Talet är rationellt och lika med $\,314/100 = 157/50\,$.</td> | | <td class="ntext" width="100%">Talet är rationellt och lika med $\,314/100 = 157/50\,$.</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">Talet är rationellt och är lika med $\,31413/9999 = 10471/3333\,$.</td> | | <td class="ntext" width="100%">Talet är rationellt och är lika med $\,31413/9999 = 10471/3333\,$.</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="100%">Talet är rationellt och lika med $\,1999/9990\,$.</td> | | <td class="ntext" width="100%">Talet är rationellt och lika med $\,1999/9990\,$.</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="100%">Talet är irrationellt.</td> | | <td class="ntext" width="100%">Talet är irrationellt.</td> |
| </tr> | | </tr> |
Rad 141: |
Rad 141: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{93}{28}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{93}{28}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{3}{35}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{3}{35}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$\displaystyle -\frac{7}{30}$</td> | | <td class="ntext" width="33%">$\displaystyle -\frac{7}{30}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{47}{60}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{47}{60}$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{47}{84}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{47}{84}$</td> |
| </tr> | | </tr> |
Rad 162: |
Rad 162: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$\displaystyle {30}$</td> | | <td class="ntext" width="50%">$\displaystyle {30}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$\displaystyle {8}$</td> | | <td class="ntext" width="50%">$\displaystyle {8}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$\displaystyle {84}$</td> | | <td class="ntext" width="50%">$\displaystyle {84}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$\displaystyle {225}$</td> | | <td class="ntext" width="50%">$\displaystyle {225}$</td> |
| </tr> | | </tr> |
Rad 182: |
Rad 182: |
| | | |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$\displaystyle \frac{19}{100}$</td> | | <td class="ntext" width="50%">$\displaystyle \frac{19}{100}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$\displaystyle \frac{1}{240}$</td> | | <td class="ntext" width="50%">$\displaystyle \frac{1}{240}$</td> |
| </tr> | | </tr> |
Rad 195: |
Rad 195: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{6}{7}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{6}{7}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{16}{21}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{16}{21}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{1}{6}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{1}{6}$</td> |
| </tr> | | </tr> |
Rad 211: |
Rad 211: |
| | | |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{105}{4}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{105}{4}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$-5$</td> | | <td class="ntext" width="33%">$-5$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{8}{55}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{8}{55}$</td> |
| </tr> | | </tr> |
Rad 231: |
Rad 231: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="25%">$72$</td> | | <td class="ntext" width="25%">$72$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="25%">$3$</td> | | <td class="ntext" width="25%">$3$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="25%">$-125$</td> | | <td class="ntext" width="25%">$-125$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="25%">$\displaystyle \frac{27}{8}$</td> | | <td class="ntext" width="25%">$\displaystyle \frac{27}{8}$</td> |
| </tr> | | </tr> |
Rad 248: |
Rad 248: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$2^6$</td> | | <td class="ntext" width="33%">$2^6$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$2^{-2}$</td> | | <td class="ntext" width="33%">$2^{-2}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$2^0$</td> | | <td class="ntext" width="33%">$2^0$</td> |
| </tr> | | </tr> |
Rad 263: |
Rad 263: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="20%">$3^{-1}$</td> | | <td class="ntext" width="20%">$3^{-1}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="20%">$3^5$</td> | | <td class="ntext" width="20%">$3^5$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="20%">$3^4$</td> | | <td class="ntext" width="20%">$3^4$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="20%">$3^{-3}$</td> | | <td class="ntext" width="20%">$3^{-3}$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="20%">$3^{-3}$</td> | | <td class="ntext" width="20%">$3^{-3}$</td> |
| </tr> | | </tr> |
Rad 282: |
Rad 282: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$4$</td> | | <td class="ntext" width="33%">$4$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$3$</td> | | <td class="ntext" width="33%">$3$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$625$</td> | | <td class="ntext" width="33%">$625$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">$16$</td> | | <td class="ntext" width="33%">$16$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{1}{3750}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{1}{3750}$</td> |
| </tr> | | </tr> |
Rad 303: |
Rad 303: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$2$</td> | | <td class="ntext" width="33%">$2$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{1}{2}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{1}{2}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$27$</td> | | <td class="ntext" width="33%">$27$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">$2209$</td> | | <td class="ntext" width="33%">$2209$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">$9$</td> | | <td class="ntext" width="33%">$9$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{25}{3}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{25}{3}$</td> |
| </tr> | | </tr> |
Rad 327: |
Rad 327: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$256^{1/3}>200^{1/3}$</td> | | <td class="ntext" width="33%">$256^{1/3}>200^{1/3}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$0{,}4^{-3}>0{,}5^{-3}$</td> | | <td class="ntext" width="33%">$0{,}4^{-3}>0{,}5^{-3}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$0{,}2^{5}>0{,}2^{7}$</td> | | <td class="ntext" width="33%">$0{,}2^{5}>0{,}2^{7}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">$\bigl(5^{1/3}\bigr)^{4}>400^{1/3}$</td> | | <td class="ntext" width="33%">$\bigl(5^{1/3}\bigr)^{4}>400^{1/3}$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">$125^{1/2}>625^{1/3}$</td> | | <td class="ntext" width="33%">$125^{1/2}>625^{1/3}$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="33%">$3^{40}>2^{56}$</td> | | <td class="ntext" width="33%">$3^{40}>2^{56}$</td> |
| </tr> | | </tr> |
Rad 349: |
Rad 349: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$3x^2-3x$</td> | | <td class="ntext" width="33%">$3x^2-3x$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$xy+x^2y-x^3y$</td> | | <td class="ntext" width="33%">$xy+x^2y-x^3y$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$-4x^2+x^2y^2$</td> | | <td class="ntext" width="33%">$-4x^2+x^2y^2$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">$x^3y-x^2y+x^3y^2$</td> | | <td class="ntext" width="33%">$x^3y-x^2y+x^3y^2$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">$x^2-14x+49$</td> | | <td class="ntext" width="33%">$x^2-14x+49$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="33%">$16y^2+40y+25$</td> | | <td class="ntext" width="33%">$16y^2+40y+25$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">g)</td> | + | <td class="ntext">g) </td> |
| <td class="ntext" width="33%">$9x^6-6x^3y^2+y^4$</td> | | <td class="ntext" width="33%">$9x^6-6x^3y^2+y^4$</td> |
- | <td class="ntext">h)</td> | + | <td class="ntext">h) </td> |
| <td class="ntext" width="33%">$9x^{10}+30x^8+25x^6$</td> | | <td class="ntext" width="33%">$9x^{10}+30x^8+25x^6$</td> |
| </tr> | | </tr> |
Rad 378: |
Rad 378: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$-5x^2+20$</td> | | <td class="ntext" width="50%">$-5x^2+20$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$10x-11$</td> | | <td class="ntext" width="50%">$10x-11$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$54x$</td> | | <td class="ntext" width="50%">$54x$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$81x^8-16$</td> | | <td class="ntext" width="50%">$81x^8-16$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="50%">$2a^2+2b^2$</td> | | <td class="ntext" width="50%">$2a^2+2b^2$</td> |
| </tr> | | </tr> |
Rad 401: |
Rad 401: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$(x+6)(x-6)$</td> | | <td class="ntext" width="33%">$(x+6)(x-6)$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$5(x+2)(x-2)$</td> | | <td class="ntext" width="33%">$5(x+2)(x-2)$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$(x+3)^2$</td> | | <td class="ntext" width="33%">$(x+3)^2$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">$(x-5)^2$</td> | | <td class="ntext" width="33%">$(x-5)^2$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">$-2x(x+3)(x-3)$</td> | | <td class="ntext" width="33%">$-2x(x+3)(x-3)$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="33%">$(4x+1)^2$</td> | | <td class="ntext" width="33%">$(4x+1)^2$</td> |
| </tr> | | </tr> |
Rad 424: |
Rad 424: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">$5\,$ framför $\,x^2\,$, $\,3\,$ framför $\,x$</td> | | <td class="ntext" width="100%">$5\,$ framför $\,x^2\,$, $\,3\,$ framför $\,x$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$2\,$ framför $\,x^2\,$, $\,1\,$ framför $\,x$</td> | | <td class="ntext" width="100%">$2\,$ framför $\,x^2\,$, $\,1\,$ framför $\,x$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">$\textrm{c) }$</td> | + | <td class="ntext">$\textrm{c) }$</td> |
| <td class="ntext" width="100%">$6\,$ framför $\,x^2\,$, $\,2\,$ framför $\,x$</td> | | <td class="ntext" width="100%">$6\,$ framför $\,x^2\,$, $\,2\,$ framför $\,x$</td> |
| </tr> | | </tr> |
Rad 443: |
Rad 443: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$\displaystyle \frac{1}{1-x}$</td> | | <td class="ntext" width="50%">$\displaystyle \frac{1}{1-x}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$-\displaystyle \frac{1}{y(y+2)}$</td> | | <td class="ntext" width="50%">$-\displaystyle \frac{1}{y(y+2)}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$3(x-2)(x-1)$</td> | | <td class="ntext" width="50%">$3(x-2)(x-1)$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$\displaystyle \frac{2(y+2)}{y^2+4}$</td> | | <td class="ntext" width="50%">$\displaystyle \frac{2(y+2)}{y^2+4}$</td> |
| </tr> | | </tr> |
Rad 461: |
Rad 461: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$2y$</td> | | <td class="ntext" width="50%">$2y$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$\displaystyle\frac{-x+12}{(x-2)(x+3)}$</td> | | <td class="ntext" width="50%">$\displaystyle\frac{-x+12}{(x-2)(x+3)}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
- | <td class="ntext" width="50%">$\displaystyle\frac{b}{a(a-b)}$</td> | + | <td class="ntext" width="50%">$\displaystyle\frac{b}{a(a-b) }$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
- | <td class="ntext" width="50%">$\displaystyle\frac{a(a+b)}{4b}$</td> | + | <td class="ntext" width="50%">$\displaystyle\frac{a(a+b) }{4b}$</td> |
| </tr> | | </tr> |
| </table> | | </table> |
Rad 479: |
Rad 479: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{4}{(x+3)(x+5)}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{4}{(x+3)(x+5)}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{x^4-x^3+x^2+x-1}{x^2(x-1)}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{x^4-x^3+x^2+x-1}{x^2(x-1)}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{ax(a+1-x)}{(a+1)^2}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{ax(a+1-x)}{(a+1)^2}$</td> |
| </tr> | | </tr> |
Rad 493: |
Rad 493: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{x}{(x+3)(x+1)}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{x}{(x+3)(x+1)}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{2(x-3)}{x}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{2(x-3)}{x}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{x+2}{2x+3}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{x+2}{2x+3}$</td> |
| </tr> | | </tr> |
Rad 508: |
Rad 508: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$x=1$</td> | | <td class="ntext" width="50%">$x=1$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$x=6$</td> | | <td class="ntext" width="50%">$x=6$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c) </td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$x=-\displaystyle\frac{3}{2}$</td> | | <td class="ntext" width="50%">$x=-\displaystyle\frac{3}{2}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$x=-\displaystyle\frac{13}{3}$</td> | | <td class="ntext" width="50%">$x=-\displaystyle\frac{13}{3}$</td> |
| </tr> | | </tr> |
Rad 527: |
Rad 527: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$x=1$</td> | | <td class="ntext" width="50%">$x=1$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$x=\displaystyle\frac{5}{3}$</td> | | <td class="ntext" width="50%">$x=\displaystyle\frac{5}{3}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$x=2$</td> | | <td class="ntext" width="50%">$x=2$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$x=-2$</td> | | <td class="ntext" width="50%">$x=-2$</td> |
| </tr> | | </tr> |
Rad 546: |
Rad 546: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">$x=9$</td> | | <td class="ntext" width="100%">$x=9$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$x=\displaystyle\frac{7}{5}$</td> | | <td class="ntext" width="100%">$x=\displaystyle\frac{7}{5}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c) </td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="100%">$x=\displaystyle\frac{4}{5}$</td> | | <td class="ntext" width="100%">$x=\displaystyle\frac{4}{5}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d) </td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="100%">$x=\displaystyle\frac{1}{2}$</td> | | <td class="ntext" width="100%">$x=\displaystyle\frac{1}{2}$</td> |
| </tr> | | </tr> |
Rad 569: |
Rad 569: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td>a)</td> | + | <td>a) </td> |
| <td width="100%">$-2x+y=3$</td> | | <td width="100%">$-2x+y=3$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td>b)</td> | + | <td>b) </td> |
| <td width="100%">$y=-\displaystyle\frac{3}{4}x+\frac{5}{4}$</td> | | <td width="100%">$y=-\displaystyle\frac{3}{4}x+\frac{5}{4}$</td> |
| </tr> | | </tr> |
Rad 584: |
Rad 584: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">$y=-3x+9$</td> | | <td class="ntext" width="100%">$y=-3x+9$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$y=-3x+1$</td> | | <td class="ntext" width="100%">$y=-3x+1$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="100%">$y=3x+5$</td> | | <td class="ntext" width="100%">$y=3x+5$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="100%">$y=-\displaystyle \frac{1}{2}x+5$</td> | | <td class="ntext" width="100%">$y=-\displaystyle \frac{1}{2}x+5$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="100%">$k = \displaystyle\frac{8}{5}$</td> | | <td class="ntext" width="100%">$k = \displaystyle\frac{8}{5}$</td> |
| </tr> | | </tr> |
Rad 611: |
Rad 611: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$\bigl(-\frac{5}{3},0\bigr)$</td> | | <td class="ntext" width="50%">$\bigl(-\frac{5}{3},0\bigr)$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$(0,5)$</td> | | <td class="ntext" width="50%">$(0,5)$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$\bigl(0,-\frac{6}{5}\bigr)$</td> | | <td class="ntext" width="50%">$\bigl(0,-\frac{6}{5}\bigr)$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$(12,-13)$</td> | | <td class="ntext" width="50%">$(12,-13)$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="50%">$\bigl(-\frac{1}{4},\frac{3}{2}\bigr)$</td> | | <td class="ntext" width="50%">$\bigl(-\frac{1}{4},\frac{3}{2}\bigr)$</td> |
| </tr> | | </tr> |
Rad 634: |
Rad 634: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">[[Bild:Svar_o2_2_7a.gif]] </td> | | <td class="ntext" width="33%">[[Bild:Svar_o2_2_7a.gif]] </td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">[[Bild:Svar_o2_2_7b.gif]] </td> | | <td class="ntext" width="33%">[[Bild:Svar_o2_2_7b.gif]] </td> |
| </tr><tr> | | </tr><tr> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">[[Bild:Svar_o2_2_7c.gif]] </td> | | <td class="ntext" width="33%">[[Bild:Svar_o2_2_7c.gif]] </td> |
| </tr> | | </tr> |
Rad 649: |
Rad 649: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">[[Bild:Svar_o2_2_8a.gif]]</td> | | <td class="ntext" width="33%">[[Bild:Svar_o2_2_8a.gif]]</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">[[Bild:Svar_o2_2_8b.gif]]</td> | | <td class="ntext" width="33%">[[Bild:Svar_o2_2_8b.gif]]</td> |
| </tr><tr> | | </tr><tr> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">[[Bild:Svar_o2_2_8c.gif]]</td> | | <td class="ntext" width="33%">[[Bild:Svar_o2_2_8c.gif]]</td> |
| </tr> | | </tr> |
Rad 664: |
Rad 664: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">$4\,$ a.e.</td> | | <td class="ntext" width="100%">$4\,$ a.e.</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$5\,$ a.e.</td> | | <td class="ntext" width="100%">$5\,$ a.e.</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="100%">$6\,$ a.e.</td> | | <td class="ntext" width="100%">$6\,$ a.e.</td> |
| </tr> | | </tr> |
Rad 684: |
Rad 684: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="25%">$(x-1)^2-1$</td> | | <td class="ntext" width="25%">$(x-1)^2-1$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="25%">$(x+1)^2-2$</td> | | <td class="ntext" width="25%">$(x+1)^2-2$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="25%">$-(x-1)^2+6$</td> | | <td class="ntext" width="25%">$-(x-1)^2+6$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="25%">$\bigl(x+\frac{5}{2}\bigr)^2-\frac{13}{4}$</td> | | <td class="ntext" width="25%">$\bigl(x+\frac{5}{2}\bigr)^2-\frac{13}{4}$</td> |
| </tr> | | </tr> |
Rad 702: |
Rad 702: |
| | | |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$\left\{ \eqalign{ x_1 &= 1 \cr x_2 &= 3\cr }\right.$</td> | | <td class="ntext" width="33%">$\left\{ \eqalign{ x_1 &= 1 \cr x_2 &= 3\cr }\right.$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$\left\{ \eqalign{ y_1 &= -5 \cr y_2 &= 3\cr }\right.$</td> | | <td class="ntext" width="33%">$\left\{ \eqalign{ y_1 &= -5 \cr y_2 &= 3\cr }\right.$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
- | <td class="ntext" width="33%"> saknar (reella) lösning</td> | + | <td class="ntext" width="33%"> saknar (reella) lösning</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">$ \left\{ \eqalign{ x_1 &= \textstyle\frac{1}{2}\cr x_2 &= \textstyle\frac{13}{2}\cr }\right.$</td> | | <td class="ntext" width="33%">$ \left\{ \eqalign{ x_1 &= \textstyle\frac{1}{2}\cr x_2 &= \textstyle\frac{13}{2}\cr }\right.$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">$\left\{ \eqalign{ x_1 &= -1 \cr x_2 &= \textstyle\frac{3}{5}\cr }\right.$</td> | | <td class="ntext" width="33%">$\left\{ \eqalign{ x_1 &= -1 \cr x_2 &= \textstyle\frac{3}{5}\cr }\right.$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="33%">$ \left\{ \eqalign{ x_1 &= \textstyle\frac{4}{3}\cr x_2 &= 2\cr }\right.$</td> | | <td class="ntext" width="33%">$ \left\{ \eqalign{ x_1 &= \textstyle\frac{4}{3}\cr x_2 &= 2\cr }\right.$</td> |
| </tr> | | </tr> |
Rad 725: |
Rad 725: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 &= 0 \cr x_2 & = -3\cr }\right.$</td> | | <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 &= 0 \cr x_2 & = -3\cr }\right.$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 &= 3 \cr x_2 & = -5\cr }\right. $</td> | | <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 &= 3 \cr x_2 & = -5\cr }\right. $</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = \textstyle\frac{2}{3} \cr x_2 & = -8\cr }\right. $</td> | | <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = \textstyle\frac{2}{3} \cr x_2 & = -8\cr }\right. $</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = 0\cr x_2 & = 12\cr }\right. $</td> | | <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = 0\cr x_2 & = 12\cr }\right. $</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = -3 \cr x_2 & = 8\cr }\right. $</td> | | <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = -3 \cr x_2 & = 8\cr }\right. $</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = 0 \cr x_2 & = 1 \cr x_3 & = 2 }\right. $</td> | | <td class="ntext" width="50%">$\left\{ \eqalign{ x_1 & = 0 \cr x_2 & = 1 \cr x_3 & = 2 }\right. $</td> |
| </tr> | | </tr> |
Rad 750: |
Rad 750: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">$ax^2-ax-2a=0\,$, där $\,a\ne 0\,$ är en konstant.</td> | | <td class="ntext" width="100%">$ax^2-ax-2a=0\,$, där $\,a\ne 0\,$ är en konstant.</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$ax^2-2ax-2a=0\,$, där $\,a\ne 0\,$ är en konstant.</td> | | <td class="ntext" width="100%">$ax^2-2ax-2a=0\,$, där $\,a\ne 0\,$ är en konstant.</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="100%">$ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,$, där $\,a\ne 0\,$ är en konstant.</td> | | <td class="ntext" width="100%">$ax^2-(3+\sqrt{3}\,)ax+3\sqrt{3}\,a=0\,$, där $\,a\ne 0\,$ är en konstant.</td> |
| </tr> | | </tr> |
Rad 769: |
Rad 769: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">Exempelvis $\ x^2+14x+49=0\,$.</td> | | <td class="ntext" width="100%">Exempelvis $\ x^2+14x+49=0\,$.</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$3< x<4$</td> | | <td class="ntext" width="100%">$3< x<4$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="100%">$b=-5$</td> | | <td class="ntext" width="100%">$b=-5$</td> |
| </tr> | | </tr> |
Rad 788: |
Rad 788: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$0$</td> | | <td class="ntext" width="33%">$0$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$-2$</td> | | <td class="ntext" width="33%">$-2$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{3}{4}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{3}{4}$</td> |
| </tr> | | </tr> |
Rad 803: |
Rad 803: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$1$</td> | | <td class="ntext" width="33%">$1$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$\displaystyle -\frac{7}{4}$</td> | | <td class="ntext" width="33%">$\displaystyle -\frac{7}{4}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">saknar max</td> | | <td class="ntext" width="33%">saknar max</td> |
| </tr> | | </tr> |
Rad 828: |
Rad 828: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$(-1,0)\ $ och $\ (1,0)$</td> | | <td class="ntext" width="33%">$(-1,0)\ $ och $\ (1,0)$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$(2,0)\ $ och $\ (3,0)$</td> | | <td class="ntext" width="33%">$(2,0)\ $ och $\ (3,0)$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$(1,0)\ $ och $\ (3,0)$</td> | | <td class="ntext" width="33%">$(1,0)\ $ och $\ (3,0)$</td> |
| </tr> | | </tr> |
Rad 851: |
Rad 851: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="25%">$2^{1/2}$</td> | | <td class="ntext" width="25%">$2^{1/2}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="25%">$7^{5/2}$</td> | | <td class="ntext" width="25%">$7^{5/2}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="25%">$3^{4/3}$</td> | | <td class="ntext" width="25%">$3^{4/3}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="25%">$3^{1/4}$</td> | | <td class="ntext" width="25%">$3^{1/4}$</td> |
| </tr> | | </tr> |
Rad 868: |
Rad 868: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="25%">$3$</td> | | <td class="ntext" width="25%">$3$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="25%">$3$</td> | | <td class="ntext" width="25%">$3$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="25%">ej definierad</td> | | <td class="ntext" width="25%">ej definierad</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="25%">$5^{11/6}$</td> | | <td class="ntext" width="25%">$5^{11/6}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="25%">$12$</td> | | <td class="ntext" width="25%">$12$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="25%">$2$</td> | | <td class="ntext" width="25%">$2$</td> |
- | <td class="ntext">g)</td> | + | <td class="ntext">g) </td> |
| <td class="ntext" width="25%">$-5$</td> | | <td class="ntext" width="25%">$-5$</td> |
| <td></td> | | <td></td> |
Rad 895: |
Rad 895: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$3$</td> | | <td class="ntext" width="50%">$3$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$\displaystyle \frac{4\sqrt{3}}{3}$</td> | | <td class="ntext" width="50%">$\displaystyle \frac{4\sqrt{3}}{3}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$2\sqrt{5}$</td> | | <td class="ntext" width="50%">$2\sqrt{5}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$2-\sqrt{2}$</td> | | <td class="ntext" width="50%">$2-\sqrt{2}$</td> |
| </tr> | | </tr> |
Rad 914: |
Rad 914: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$0{,}4$</td> | | <td class="ntext" width="50%">$0{,}4$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$0{,}3$</td> | | <td class="ntext" width="50%">$0{,}3$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$-4\sqrt{2}$</td> | | <td class="ntext" width="50%">$-4\sqrt{2}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$2\sqrt{3}$</td> | | <td class="ntext" width="50%">$2\sqrt{3}$</td> |
| </tr> | | </tr> |
Rad 933: |
Rad 933: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="25%">$\displaystyle \frac{\sqrt{3}}{3}$</td> | | <td class="ntext" width="25%">$\displaystyle \frac{\sqrt{3}}{3}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="25%">$\displaystyle \frac{7^{2/3}}{7}$</td> | | <td class="ntext" width="25%">$\displaystyle \frac{7^{2/3}}{7}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="25%">$3-\sqrt{7}$</td> | | <td class="ntext" width="25%">$3-\sqrt{7}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="25%">$\displaystyle \frac{\sqrt{17}+\sqrt{13}}{4}$</td> | | <td class="ntext" width="25%">$\displaystyle \frac{\sqrt{17}+\sqrt{13}}{4}$</td> |
| </tr> | | </tr> |
Rad 950: |
Rad 950: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$6+2\sqrt{2}+3\sqrt{5}+\sqrt{10}$</td> | | <td class="ntext" width="50%">$6+2\sqrt{2}+3\sqrt{5}+\sqrt{10}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$-\displaystyle \frac{5+4\sqrt{3}}{23}$</td> | | <td class="ntext" width="50%">$-\displaystyle \frac{5+4\sqrt{3}}{23}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$\displaystyle \frac{2}{3}\sqrt{6}+\displaystyle \frac{2}{3}\sqrt{3}-\displaystyle \frac{2}{5}\sqrt{10}-\displaystyle \frac{2}{5}\sqrt{5}$</td> | | <td class="ntext" width="50%">$\displaystyle \frac{2}{3}\sqrt{6}+\displaystyle \frac{2}{3}\sqrt{3}-\displaystyle \frac{2}{5}\sqrt{10}-\displaystyle \frac{2}{5}\sqrt{5}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$\displaystyle \frac{5\sqrt{3}+7\sqrt{2}-\sqrt{6}-12}{23}$</td> | | <td class="ntext" width="50%">$\displaystyle \frac{5\sqrt{3}+7\sqrt{2}-\sqrt{6}-12}{23}$</td> |
| </tr> | | </tr> |
Rad 969: |
Rad 969: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$\sqrt{5}-\sqrt{7}$</td> | | <td class="ntext" width="33%">$\sqrt{5}-\sqrt{7}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$-\sqrt{35}$</td> | | <td class="ntext" width="33%">$-\sqrt{35}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$\sqrt{17}$</td> | | <td class="ntext" width="33%">$\sqrt{17}$</td> |
| </tr> | | </tr> |
Rad 984: |
Rad 984: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$\sqrt[\scriptstyle3]6 > \sqrt[\scriptstyle3]5$</td> | | <td class="ntext" width="50%">$\sqrt[\scriptstyle3]6 > \sqrt[\scriptstyle3]5$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$7 > \sqrt7$</td> | | <td class="ntext" width="50%">$7 > \sqrt7$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$\sqrt7 > 2{,}5$</td> | | <td class="ntext" width="50%">$\sqrt7 > 2{,}5$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$\sqrt[\scriptstyle3]2\cdot3 > \sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3$</td> | | <td class="ntext" width="50%">$\sqrt[\scriptstyle3]2\cdot3 > \sqrt2\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3$</td> |
| </tr> | | </tr> |
Rad 1 069: |
Rad 1 069: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$x=3$</td> | | <td class="ntext" width="50%">$x=3$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$x=-1$</td> | | <td class="ntext" width="50%">$x=-1$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$x=-2$</td> | | <td class="ntext" width="50%">$x=-2$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$x=4$</td> | | <td class="ntext" width="50%">$x=4$</td> |
| </tr> | | </tr> |
Rad 1 088: |
Rad 1 088: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="25%">$-1$</td> | | <td class="ntext" width="25%">$-1$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="25%">$4$</td> | | <td class="ntext" width="25%">$4$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="25%">$-3$</td> | | <td class="ntext" width="25%">$-3$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="25%">$0$</td> | | <td class="ntext" width="25%">$0$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="25%">$2$</td> | | <td class="ntext" width="25%">$2$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="25%">$3$</td> | | <td class="ntext" width="25%">$3$</td> |
- | <td class="ntext">g)</td> | + | <td class="ntext">g) </td> |
| <td class="ntext" width="25%">$10$</td> | | <td class="ntext" width="25%">$10$</td> |
- | <td class="ntext">h)</td> | + | <td class="ntext">h) </td> |
| <td class="ntext" width="25%">$-2$</td> | | <td class="ntext" width="25%">$-2$</td> |
| </tr> | | </tr> |
Rad 1 115: |
Rad 1 115: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$3$</td> | | <td class="ntext" width="33%">$3$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$-\displaystyle \frac{1}{2}$</td> | | <td class="ntext" width="33%">$-\displaystyle \frac{1}{2}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$-3$</td> | | <td class="ntext" width="33%">$-3$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{7}{3}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{7}{3}$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">$4$</td> | | <td class="ntext" width="33%">$4$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="33%">$-2$</td> | | <td class="ntext" width="33%">$-2$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">g)</td> | + | <td class="ntext">g) </td> |
| <td class="ntext" width="33%">$1$</td> | | <td class="ntext" width="33%">$1$</td> |
- | <td class="ntext">h)</td> | + | <td class="ntext">h) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{5}{2}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{5}{2}$</td> |
| </tr> | | </tr> |
Rad 1 144: |
Rad 1 144: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$1$</td> | | <td class="ntext" width="33%">$1$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$0$</td> | | <td class="ntext" width="33%">$0$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$-\displaystyle \frac{1}{2}\lg{3}$</td> | | <td class="ntext" width="33%">$-\displaystyle \frac{1}{2}\lg{3}$</td> |
| </tr> | | </tr> |
Rad 1 159: |
Rad 1 159: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$5$</td> | | <td class="ntext" width="33%">$5$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$0$</td> | | <td class="ntext" width="33%">$0$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$0$</td> | | <td class="ntext" width="33%">$0$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">$0$</td> | | <td class="ntext" width="33%">$0$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">$-2$</td> | | <td class="ntext" width="33%">$-2$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="33%">$e^2$</td> | | <td class="ntext" width="33%">$e^2$</td> |
| </tr> | | </tr> |
Rad 1 183: |
Rad 1 183: |
| <tr align="left"><td height="5px"/></tr> | | <tr align="left"><td height="5px"/></tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">$1{,}262$</td> | | <td class="ntext" width="100%">$1{,}262$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$1{,}663$</td> | | <td class="ntext" width="100%">$1{,}663$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="100%">$4{,}762$</td> | | <td class="ntext" width="100%">$4{,}762$</td> |
| </tr> | | </tr> |
Rad 1 202: |
Rad 1 202: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$x=\ln 13$</td> | | <td class="ntext" width="33%">$x=\ln 13$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$x=\displaystyle\frac{\ln 2 - \ln 13}{1+\ln 3}$</td> | | <td class="ntext" width="33%">$x=\displaystyle\frac{\ln 2 - \ln 13}{1+\ln 3}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$x=\displaystyle\frac{\ln 7 - \ln 3}{1-\ln 2}$</td> | | <td class="ntext" width="33%">$x=\displaystyle\frac{\ln 7 - \ln 3}{1-\ln 2}$</td> |
| | | |
Rad 1 217: |
Rad 1 217: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$ \left\{ \eqalign{ x_1&=\sqrt2 \cr x_2&=-\sqrt2 } \right. $</td> | | <td class="ntext" width="33%">$ \left\{ \eqalign{ x_1&=\sqrt2 \cr x_2&=-\sqrt2 } \right. $</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$x=\ln \left(\displaystyle\frac{\sqrt17}{2}-\frac{1}{2}\right)$</td> | | <td class="ntext" width="33%">$x=\ln \left(\displaystyle\frac{\sqrt17}{2}-\frac{1}{2}\right)$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">Saknar lösning</td> | | <td class="ntext" width="33%">Saknar lösning</td> |
| </tr> | | </tr> |
Rad 1 232: |
Rad 1 232: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$x=-\,\displaystyle\frac{1}{\ln{2}}\pm\sqrt{\left(\displaystyle\frac{1}{\ln{2}}\right)^2-1}$</td> | | <td class="ntext" width="50%">$x=-\,\displaystyle\frac{1}{\ln{2}}\pm\sqrt{\left(\displaystyle\frac{1}{\ln{2}}\right)^2-1}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$x=\displaystyle \frac{5}{2}$</td> | | <td class="ntext" width="50%">$x=\displaystyle \frac{5}{2}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$x=1$</td> | | <td class="ntext" width="50%">$x=1$</td> |
| </tr> | | </tr> |
Rad 1 248: |
Rad 1 248: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$90^\circ\ $ och $\ \displaystyle \frac{\pi}{2} \textrm{ rad} $</td> | | <td class="ntext" width="50%">$90^\circ\ $ och $\ \displaystyle \frac{\pi}{2} \textrm{ rad} $</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$135^\circ\ $ och $\ \displaystyle \frac{3\pi}{4} \textrm{ rad}$</td> | | <td class="ntext" width="50%">$135^\circ\ $ och $\ \displaystyle \frac{3\pi}{4} \textrm{ rad}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$-240^\circ\ $ och $\ \displaystyle -\frac{4\pi}{3} \textrm{ rad}$</td> | | <td class="ntext" width="50%">$-240^\circ\ $ och $\ \displaystyle -\frac{4\pi}{3} \textrm{ rad}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$2910^\circ\ $ och $\ \displaystyle \frac{97\pi}{6} \textrm{ rad}$</td> | | <td class="ntext" width="50%">$2910^\circ\ $ och $\ \displaystyle \frac{97\pi}{6} \textrm{ rad}$</td> |
| </tr> | | </tr> |
Rad 1 267: |
Rad 1 267: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="25%">$\displaystyle \frac{\pi}{4}\textrm{ rad}$</td> | | <td class="ntext" width="25%">$\displaystyle \frac{\pi}{4}\textrm{ rad}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="25%">$\displaystyle \frac{3\pi}{4}\textrm{ rad}$</td> | | <td class="ntext" width="25%">$\displaystyle \frac{3\pi}{4}\textrm{ rad}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="25%">$-\displaystyle \frac{7\pi}{20}\textrm{ rad}$</td> | | <td class="ntext" width="25%">$-\displaystyle \frac{7\pi}{20}\textrm{ rad}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="25%">$\displaystyle \frac{3\pi}{2}\textrm{ rad}$</td> | | <td class="ntext" width="25%">$\displaystyle \frac{3\pi}{2}\textrm{ rad}$</td> |
| </tr> | | </tr> |
Rad 1 284: |
Rad 1 284: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$x=50$</td> | | <td class="ntext" width="33%">$x=50$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$x=5$</td> | | <td class="ntext" width="33%">$x=5$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$x=15$</td> | | <td class="ntext" width="33%">$x=15$</td> |
| </tr> | | </tr> |
Rad 1 299: |
Rad 1 299: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">$5 \textrm{ l.e.}$</td> | | <td class="ntext" width="100%">$5 \textrm{ l.e.}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$\sqrt{61} \textrm{ l.e.}$</td> | | <td class="ntext" width="100%">$\sqrt{61} \textrm{ l.e.}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="100%">$(2,0)$</td> | | <td class="ntext" width="100%">$(2,0)$</td> |
| </tr> | | </tr> |
Rad 1 318: |
Rad 1 318: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">$(x-1)^2+(y-2)^2=4$</td> | | <td class="ntext" width="100%">$(x-1)^2+(y-2)^2=4$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$(x-2)^2+(y+1)^2=13$</td> | | <td class="ntext" width="100%">$(x-2)^2+(y+1)^2=13$</td> |
| </tr> | | </tr> |
Rad 1 333: |
Rad 1 333: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">En cirkel med radie 3 och medelpunkt i origo.</td> | | <td class="ntext" width="50%">En cirkel med radie 3 och medelpunkt i origo.</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">En cirkel med radie $\sqrt 3$ och medelpunkt i punkten (1, 2).</td> | | <td class="ntext" width="50%">En cirkel med radie $\sqrt 3$ och medelpunkt i punkten (1, 2).</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">En cirkel med radie $\frac{1}{3}\sqrt 10$ och medelpunkt i punkten (1/3, -7/3).</td> | | <td class="ntext" width="50%">En cirkel med radie $\frac{1}{3}\sqrt 10$ och medelpunkt i punkten (1/3, -7/3).</td> |
| </tr> | | </tr> |
Rad 1 350: |
Rad 1 350: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">En cirkel med medelpunkt (-1, 1) och radie $\sqrt 3$.</td> | | <td class="ntext" width="50%">En cirkel med medelpunkt (-1, 1) och radie $\sqrt 3$.</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">En cirkel med medelpunkt (0, -2) och radie 2. </td> | | <td class="ntext" width="50%">En cirkel med medelpunkt (0, -2) och radie 2. </td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">En cirkel med medelpunkt (1, -3) och radie $\sqrt 7$.</td> | | <td class="ntext" width="50%">En cirkel med medelpunkt (1, -3) och radie $\sqrt 7$.</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">Endast punkten (1, -1). </td> | | <td class="ntext" width="50%">Endast punkten (1, -1). </td> |
| </tr> | | </tr> |
Rad 1 407: |
Rad 1 407: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%"> $x=13\cdot\tan {27 ^\circ} \approx 6{,}62$</td> | | <td class="ntext" width="50%"> $x=13\cdot\tan {27 ^\circ} \approx 6{,}62$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$x=25\cdot\cos {32 ^\circ} \approx 21{,}2$</td> | | <td class="ntext" width="50%">$x=25\cdot\cos {32 ^\circ} \approx 21{,}2$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$x=\displaystyle\frac{14}{\tan {40 ^\circ}} \approx 16{,}7$</td> | | <td class="ntext" width="50%">$x=\displaystyle\frac{14}{\tan {40 ^\circ}} \approx 16{,}7$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$x=\displaystyle\frac{16}{\cos {20 ^\circ}} \approx 17{,}0$</td> | | <td class="ntext" width="50%">$x=\displaystyle\frac{16}{\cos {20 ^\circ}} \approx 17{,}0$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="50%">$x=\displaystyle\frac{11}{\sin {35 ^\circ}} \approx 19{,}2$</td> | | <td class="ntext" width="50%">$x=\displaystyle\frac{11}{\sin {35 ^\circ}} \approx 19{,}2$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="50%">$x=\displaystyle\frac{19}{\tan {50 ^\circ}} \approx 15{,}9$</td> | | <td class="ntext" width="50%">$x=\displaystyle\frac{19}{\tan {50 ^\circ}} \approx 15{,}9$</td> |
| </tr> | | </tr> |
Rad 1 432: |
Rad 1 432: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%"> $\tan v=\displaystyle\frac{2}{5}$</td> | | <td class="ntext" width="50%"> $\tan v=\displaystyle\frac{2}{5}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$\sin v=\displaystyle\frac{7}{11}$</td> | | <td class="ntext" width="50%">$\sin v=\displaystyle\frac{7}{11}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$\cos v=\displaystyle\frac{5}{7}$</td> | | <td class="ntext" width="50%">$\cos v=\displaystyle\frac{5}{7}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$\sin v=\displaystyle\frac{3}{5}$</td> | | <td class="ntext" width="50%">$\sin v=\displaystyle\frac{3}{5}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="50%">$v=30 ^\circ$</td> | | <td class="ntext" width="50%">$v=30 ^\circ$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="50%">$\sin \displaystyle\frac{v}{2}=\displaystyle\frac{1}{3}$</td> | | <td class="ntext" width="50%">$\sin \displaystyle\frac{v}{2}=\displaystyle\frac{1}{3}$</td> |
| </tr> | | </tr> |
Rad 1 457: |
Rad 1 457: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$-1$</td> | | <td class="ntext" width="33%">$-1$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$1$</td> | | <td class="ntext" width="33%">$1$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$0$</td> | | <td class="ntext" width="33%">$0$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">$0$</td> | | <td class="ntext" width="33%">$0$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{1}{\sqrt{2}}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{1}{\sqrt{2}}$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{\sqrt{3}}{2}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{\sqrt{3}}{2}$</td> |
| </tr> | | </tr> |
Rad 1 480: |
Rad 1 480: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{\sqrt{3}}{2}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{\sqrt{3}}{2}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{1}{2}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{1}{2}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$-1$</td> | | <td class="ntext" width="33%">$-1$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%">$0$</td> | | <td class="ntext" width="33%">$0$</td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%">$\displaystyle \frac{1}{\sqrt{3}}$</td> | | <td class="ntext" width="33%">$\displaystyle \frac{1}{\sqrt{3}}$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="33%">$\sqrt{3}$</td> | | <td class="ntext" width="33%">$\sqrt{3}$</td> |
| </tr> | | </tr> |
Rad 1 503: |
Rad 1 503: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="25%">$-\displaystyle \frac{1}{\sqrt{2}}$</td> | | <td class="ntext" width="25%">$-\displaystyle \frac{1}{\sqrt{2}}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="25%">$1$</td> | | <td class="ntext" width="25%">$1$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="25%">$\displaystyle \frac{\sqrt{3}}{2}$</td> | | <td class="ntext" width="25%">$\displaystyle \frac{\sqrt{3}}{2}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="25%">$-1$</td> | | <td class="ntext" width="25%">$-1$</td> |
| </tr> | | </tr> |
Rad 1 561: |
Rad 1 561: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%">$v = \displaystyle \frac{9\pi}{5}$</td> | | <td class="ntext" width="33%">$v = \displaystyle \frac{9\pi}{5}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%">$v = \displaystyle \frac{6\pi}{7}$</td> | | <td class="ntext" width="33%">$v = \displaystyle \frac{6\pi}{7}$</td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%">$v = \displaystyle \frac{9\pi}{7}$</td> | | <td class="ntext" width="33%">$v = \displaystyle \frac{9\pi}{7}$</td> |
| </tr> | | </tr> |
Rad 1 575: |
Rad 1 575: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$v=\displaystyle \frac{\pi}{2}$</td> | | <td class="ntext" width="50%">$v=\displaystyle \frac{\pi}{2}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$v=\displaystyle \frac{3\pi}{5}$</td> | | <td class="ntext" width="50%">$v=\displaystyle \frac{3\pi}{5}$</td> |
| </tr> | | </tr> |
Rad 1 588: |
Rad 1 588: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$-a$</td> | | <td class="ntext" width="50%">$-a$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$a$</td> | | <td class="ntext" width="50%">$a$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$\sqrt{1-a^2}$</td> | | <td class="ntext" width="50%">$\sqrt{1-a^2}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$\sqrt{1-a^2}$</td> | | <td class="ntext" width="50%">$\sqrt{1-a^2}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="50%">$-a$</td> | | <td class="ntext" width="50%">$-a$</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="50%">$\displaystyle \frac{\sqrt{3}}{2}\sqrt{1-a^2}+\displaystyle \frac{1}{2}\cdot a $</td> | | <td class="ntext" width="50%">$\displaystyle \frac{\sqrt{3}}{2}\sqrt{1-a^2}+\displaystyle \frac{1}{2}\cdot a $</td> |
| </tr> | | </tr> |
Rad 1 613: |
Rad 1 613: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$1-b^2$</td> | | <td class="ntext" width="50%">$1-b^2$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$\sqrt{1-b^2}$</td> | | <td class="ntext" width="50%">$\sqrt{1-b^2}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$2b\sqrt{1-b^2}$</td> | | <td class="ntext" width="50%">$2b\sqrt{1-b^2}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$2b^2-1$</td> | | <td class="ntext" width="50%">$2b^2-1$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="50%">$\sqrt{1-b^2}\cdot\displaystyle \frac{1}{\sqrt{2}} + b\cdot \displaystyle \frac{1}{\sqrt{2}} $</td> | | <td class="ntext" width="50%">$\sqrt{1-b^2}\cdot\displaystyle \frac{1}{\sqrt{2}} + b\cdot \displaystyle \frac{1}{\sqrt{2}} $</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="50%">$b\cdot\displaystyle \frac{1}{2}+\sqrt{1-b^2}\cdot\displaystyle \frac{\sqrt{3}}{2}$</td> | | <td class="ntext" width="50%">$b\cdot\displaystyle \frac{1}{2}+\sqrt{1-b^2}\cdot\displaystyle \frac{\sqrt{3}}{2}$</td> |
| </tr> | | </tr> |
Rad 1 648: |
Rad 1 648: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">$\sin{v}=-\displaystyle \frac{\sqrt{7}}{4}\quad$ och $\quad\tan{v}=-\displaystyle \frac{\sqrt{7}}{3}\,$.</td> | | <td class="ntext" width="100%">$\sin{v}=-\displaystyle \frac{\sqrt{7}}{4}\quad$ och $\quad\tan{v}=-\displaystyle \frac{\sqrt{7}}{3}\,$.</td> |
| </tr> | | </tr> |
| | | |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$\cos{v}=-\displaystyle \frac{\sqrt{91}}{10}\quad$ och $\quad\tan{v}=-\displaystyle \frac{3}{\sqrt{91}}\,$.</td> | | <td class="ntext" width="100%">$\cos{v}=-\displaystyle \frac{\sqrt{91}}{10}\quad$ och $\quad\tan{v}=-\displaystyle \frac{3}{\sqrt{91}}\,$.</td> |
| </tr> | | </tr> |
| | | |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$\sin{v}=-\displaystyle \frac{3}{\sqrt{10}}\quad$ och $\quad\cos{v}=-\displaystyle \frac{1}{\sqrt{10}}\,$.</td> | | <td class="ntext" width="50%">$\sin{v}=-\displaystyle \frac{3}{\sqrt{10}}\quad$ och $\quad\cos{v}=-\displaystyle \frac{1}{\sqrt{10}}\,$.</td> |
| </tr> | | </tr> |
Rad 1 669: |
Rad 1 669: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="100%">$\sin{(x+y)}=\displaystyle \frac{4\sqrt{2}+\sqrt{5}}{9}$</td> | | <td class="ntext" width="100%">$\sin{(x+y)}=\displaystyle \frac{4\sqrt{2}+\sqrt{5}}{9}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="100%">$\sin{(x+y)}=\displaystyle \frac{3\sqrt{21}+8}{25}$</td> | | <td class="ntext" width="100%">$\sin{(x+y)}=\displaystyle \frac{3\sqrt{21}+8}{25}$</td> |
| </tr> | | </tr> |
Rad 1 706: |
Rad 1 706: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%">$\displaystyle v=\frac{\pi}{6}\,$, $\,\displaystyle v=\frac{5\pi}{6}$</td> | | <td class="ntext" width="50%">$\displaystyle v=\frac{\pi}{6}\,$, $\,\displaystyle v=\frac{5\pi}{6}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$\displaystyle v=\frac{\pi}{3}\,$, $\,\displaystyle v=\frac{5\pi}{3}$</td> | | <td class="ntext" width="50%">$\displaystyle v=\frac{\pi}{3}\,$, $\,\displaystyle v=\frac{5\pi}{3}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%">$\displaystyle v=\frac{\pi}{2}$</td> | | <td class="ntext" width="50%">$\displaystyle v=\frac{\pi}{2}$</td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%">$\displaystyle v=\frac{\pi}{4}\,$, $\,\displaystyle v=\frac{5\pi}{4}$</td> | | <td class="ntext" width="50%">$\displaystyle v=\frac{\pi}{4}\,$, $\,\displaystyle v=\frac{5\pi}{4}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="50%">lösning saknas</td> | | <td class="ntext" width="50%">lösning saknas</td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="50%">$\displaystyle v=\frac{11\pi}{6}\,$, $\,\displaystyle v=\frac{7\pi}{6}$</td> | | <td class="ntext" width="50%">$\displaystyle v=\frac{11\pi}{6}\,$, $\,\displaystyle v=\frac{7\pi}{6}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">g)</td> | + | <td class="ntext">g) </td> |
| <td class="ntext" width="50%">$\displaystyle v=\frac{5\pi}{6}\,$, $\,\displaystyle v=\frac{11\pi}{6}$</td> | | <td class="ntext" width="50%">$\displaystyle v=\frac{5\pi}{6}\,$, $\,\displaystyle v=\frac{11\pi}{6}$</td> |
| </tr> | | </tr> |
Rad 1 735: |
Rad 1 735: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="33%"> | | <td class="ntext" width="33%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 741: |
Rad 1 741: |
| x&=\displaystyle\frac{2\pi}{3}+2n\pi } \right.$ | | x&=\displaystyle\frac{2\pi}{3}+2n\pi } \right.$ |
| </td> | | </td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="33%"> | | <td class="ntext" width="33%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 747: |
Rad 1 747: |
| x&=\displaystyle\frac{5\pi}{3}+2n\pi } \right.$ | | x&=\displaystyle\frac{5\pi}{3}+2n\pi } \right.$ |
| </td> | | </td> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="33%"> | | <td class="ntext" width="33%"> |
| $x=n\pi$</td> | | $x=n\pi$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="33%"> | | <td class="ntext" width="33%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 758: |
Rad 1 758: |
| x&=\displaystyle\frac{3\pi}{20}+\displaystyle\frac{2n\pi}{5} } \right.$ | | x&=\displaystyle\frac{3\pi}{20}+\displaystyle\frac{2n\pi}{5} } \right.$ |
| </td> | | </td> |
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
| <td class="ntext" width="33%"> | | <td class="ntext" width="33%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 764: |
Rad 1 764: |
| x&=\displaystyle\frac{\pi}{6}+\displaystyle\frac{2n\pi}{5}} \right.$ | | x&=\displaystyle\frac{\pi}{6}+\displaystyle\frac{2n\pi}{5}} \right.$ |
| </td> | | </td> |
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
| <td class="ntext" width="33%"> | | <td class="ntext" width="33%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 779: |
Rad 1 779: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 786: |
Rad 1 786: |
| }\right.$ | | }\right.$ |
| </td> | | </td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 795: |
Rad 1 795: |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 802: |
Rad 1 802: |
| }\right.$ | | }\right.$ |
| </td> | | </td> |
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 829: |
Rad 1 829: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 836: |
Rad 1 836: |
| }\right.$ | | }\right.$ |
| </td> | | </td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$x=\displaystyle \frac{n\pi}{3}$</td> | | <td class="ntext" width="50%">$x=\displaystyle \frac{n\pi}{3}$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 856: |
Rad 1 856: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $x=n\pi$ | | $x=n\pi$ |
| </td> | | </td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 869: |
Rad 1 869: |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 885: |
Rad 1 885: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{ \matrix{ | | $\left\{ \matrix{ |
Rad 1 893: |
Rad 1 893: |
| }\right.$ | | }\right.$ |
| </td> | | </td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$x=\pm \displaystyle \frac{\pi}{3} + 2n\pi $</td> | | <td class="ntext" width="50%">$x=\pm \displaystyle \frac{\pi}{3} + 2n\pi $</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{ \matrix{ | | $\left\{ \matrix{ |
Rad 1 905: |
Rad 1 905: |
| </td> | | </td> |
| </tr> | | </tr> |
- | <tr><td height="5px"/></tr> | + | |
| </table> | | </table> |
| </div> | | </div> |
Rad 1 913: |
Rad 1 913: |
| <table width="100%"> | | <table width="100%"> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 921: |
Rad 1 921: |
| }\right.$ | | }\right.$ |
| </td> | | </td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
| <td class="ntext" width="50%">$x=\displaystyle \frac{\pi}{3}+n\pi$</td> | | <td class="ntext" width="50%">$x=\displaystyle \frac{\pi}{3}+n\pi$</td> |
| </tr> | | </tr> |
| <tr align="left"> | | <tr align="left"> |
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
| <td class="ntext" width="50%"> | | <td class="ntext" width="50%"> |
| $\left\{\eqalign{ | | $\left\{\eqalign{ |
Rad 1 933: |
Rad 1 933: |
| </td> | | </td> |
| </tr> | | </tr> |
- | <tr><td height="5px"/></tr> | + | |
| </table> | | </table> |
| </div> | | </div> |