Övningar 2.1
Sommarmatte 1
(Skillnad mellan versioner)
Versionen från 16 juli 2007 kl. 08.00 (redigera) KTH.SE:u1zpa8nw (Diskussion | bidrag) (Ny sida: __NOTOC__ ==Övning 2.1:1== <div class="ovning"> Utveckla <table width="100%" cellspacing="10px"> <tr align="left"> <td class="ntext">a)</td> <td class="ntext" width="33%">3x(x-1)</td> <t...) ← Gå till föregående ändring |
Nuvarande version (17 juli 2007 kl. 09.38) (redigera) (ogör) KTH.SE:u1zpa8nw (Diskussion | bidrag) |
||
(En mellanliggande version visas inte.) | |||
Rad 1: | Rad 1: | ||
__NOTOC__ | __NOTOC__ | ||
- | ==Övning 2.1:1== | + | '''Övning 2.1:1''' |
- | <div class="ovning"> | + | <div class="ovning" style="margin-top:-20px; margin-bottom:-5px;"> |
Utveckla | Utveckla | ||
- | <table width="100%" cellspacing="10px"> | + | <table width="100%"> |
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
<td class="ntext" width="33%">3x(x-1)</td> | <td class="ntext" width="33%">3x(x-1)</td> | ||
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
<td class="ntext" width="33%">(1+x-x^2)xy</td> | <td class="ntext" width="33%">(1+x-x^2)xy</td> | ||
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
<td class="ntext" width="33%">-x^2(4-y^2)</td> | <td class="ntext" width="33%">-x^2(4-y^2)</td> | ||
</tr> | </tr> | ||
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
<td class="ntext" width="33%">x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right)</td> | <td class="ntext" width="33%">x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right)</td> | ||
- | <td class="ntext">e) </td> | + | <td class="ntext">e) </td> |
<td class="ntext" width="33%">(x-7)^2</td> | <td class="ntext" width="33%">(x-7)^2</td> | ||
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
<td class="ntext" width="33%">(5+4y)^2</td> | <td class="ntext" width="33%">(5+4y)^2</td> | ||
</tr> | </tr> | ||
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">g)</td> | + | <td class="ntext">g) </td> |
<td class="ntext" width="33%">(y^2-3x^3)^2</td> | <td class="ntext" width="33%">(y^2-3x^3)^2</td> | ||
- | <td class="ntext">h)</td> | + | <td class="ntext">h) </td> |
<td class="ntext" width="33%">(5x^3+3x^5)^2</td> | <td class="ntext" width="33%">(5x^3+3x^5)^2</td> | ||
</tr> | </tr> | ||
Rad 30: | Rad 30: | ||
</div> | </div> | ||
- | ==Övning 2.1:2== | + | '''Övning 2.1:2''' |
- | <div class="ovning"> | + | <div class="ovning" style="margin-top:-20px; margin-bottom:-5px;"> |
Utveckla och förenkla så långt som möjligt | Utveckla och förenkla så långt som möjligt | ||
- | <table width="100%" cellspacing="10px"> | + | <table width="100%"> |
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
<td class="ntext" width="50%">(x-4)(x-5)-3x(2x-3)</td> | <td class="ntext" width="50%">(x-4)(x-5)-3x(2x-3)</td> | ||
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
<td class="ntext" width="50%">(1-5x)(1+15x)-3(2-5x)(2+5x)</td> | <td class="ntext" width="50%">(1-5x)(1+15x)-3(2-5x)(2+5x)</td> | ||
</tr> | </tr> | ||
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
<td class="ntext" width="50%">(3x+4)^2-(3x-2)(3x-8)</td> | <td class="ntext" width="50%">(3x+4)^2-(3x-2)(3x-8)</td> | ||
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
<td class="ntext" width="50%">(3x^2+2)(3x^2-2)(9x^4+4)</td> | <td class="ntext" width="50%">(3x^2+2)(3x^2-2)(9x^4+4)</td> | ||
</tr> | </tr> | ||
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
- | <td class="ntext" width="50%">(a+b)^2+(a-b)^2</td> | + | <td class="ntext" width="50%">$(a+b) ^2+(a-b) ^2$</td> |
</tr> | </tr> | ||
<tr><td height="5px"/></tr> | <tr><td height="5px"/></tr> | ||
Rad 54: | Rad 54: | ||
</div> | </div> | ||
- | ==Övning 2.1:3== | + | '''Övning 2.1:3''' |
- | <div class="ovning"> | + | <div class="ovning" style="margin-top:-20px; margin-bottom:-5px;"> |
Faktorisera så långt som möjligt | Faktorisera så långt som möjligt | ||
- | <table width="100%" cellspacing="10px"> | + | <table width="100%"> |
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
<td class="ntext" width="33%">x^2-36</td> | <td class="ntext" width="33%">x^2-36</td> | ||
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
<td class="ntext" width="33%">5x^2-20</td> | <td class="ntext" width="33%">5x^2-20</td> | ||
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
<td class="ntext" width="33%">x^2+6x+9</td> | <td class="ntext" width="33%">x^2+6x+9</td> | ||
</tr> | </tr> | ||
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
<td class="ntext" width="33%">x^2-10x+25</td> | <td class="ntext" width="33%">x^2-10x+25</td> | ||
- | <td class="ntext">e)</td> | + | <td class="ntext">e) </td> |
<td class="ntext" width="33%">18x-2x^3</td> | <td class="ntext" width="33%">18x-2x^3</td> | ||
- | <td class="ntext">f)</td> | + | <td class="ntext">f) </td> |
<td class="ntext" width="33%">16x^2+8x+1</td> | <td class="ntext" width="33%">16x^2+8x+1</td> | ||
</tr> | </tr> | ||
Rad 79: | Rad 79: | ||
</div> | </div> | ||
- | ==Övning 2.1:4== | + | '''Övning 2.1:4''' |
- | <div class="ovning"> | + | <div class="ovning" style="margin-top:-20px; margin-bottom:-5px;"> |
Bestäm koefficienterna framför \,x\, och \,x^2\, när följande uttryck utvecklas | Bestäm koefficienterna framför \,x\, och \,x^2\, när följande uttryck utvecklas | ||
- | <table width="100%" cellspacing="10px"> | + | <table width="100%"> |
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
<td class="ntext" width="100%">(x+2)(3x^2-x+5)</td> | <td class="ntext" width="100%">(x+2)(3x^2-x+5)</td> | ||
</tr> | </tr> | ||
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
<td class="ntext" width="100%">(1+x+x^2+x^3)(2-x+x^2+x^4)</td> | <td class="ntext" width="100%">(1+x+x^2+x^3)(2-x+x^2+x^4)</td> | ||
</tr> | </tr> | ||
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
<td class="ntext" width="100%">(x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4)</td> | <td class="ntext" width="100%">(x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4)</td> | ||
</tr> | </tr> | ||
Rad 99: | Rad 99: | ||
</div> | </div> | ||
- | ==Övning 2.1:5== | + | '''Övning 2.1:5''' |
- | <div class="ovning"> | + | <div class="ovning" style="margin-top:-20px; margin-bottom:-5px;"> |
Förenkla så långt som möjligt | Förenkla så långt som möjligt | ||
- | <table width="100%" cellspacing="10px"> | + | <table width="100%"> |
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
<td class="ntext" width="50%">\displaystyle \frac{1}{x-x^2}-\displaystyle \frac{1}{x}</td> | <td class="ntext" width="50%">\displaystyle \frac{1}{x-x^2}-\displaystyle \frac{1}{x}</td> | ||
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
<td class="ntext" width="50%">\displaystyle \frac{1}{y^2-2y}-\displaystyle \frac{2}{y^2-4}</td> | <td class="ntext" width="50%">\displaystyle \frac{1}{y^2-2y}-\displaystyle \frac{2}{y^2-4}</td> | ||
</tr> | </tr> | ||
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
<td class="ntext" width="50%">\displaystyle \frac{(3x^2-12)(x^2-1)}{(x+1)(x+2)}</td> | <td class="ntext" width="50%">\displaystyle \frac{(3x^2-12)(x^2-1)}{(x+1)(x+2)}</td> | ||
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
<td class="ntext" width="50%">\displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}</td> | <td class="ntext" width="50%">\displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)}</td> | ||
</tr> | </tr> | ||
Rad 118: | Rad 118: | ||
</div> | </div> | ||
- | ==Övning 2.1:6== | + | '''Övning 2.1:6''' |
- | <div class="ovning"> | + | <div class="ovning" style="margin-top:-20px; margin-bottom:-5px;"> |
Förenkla så långt som möjligt | Förenkla så långt som möjligt | ||
- | <table width="100%" cellspacing="10px"> | + | <table width="100%"> |
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
<td class="ntext" width="50%">\left(x-y+\displaystyle\frac{x^2}{y-x}\right) \left(\displaystyle\frac{y}{2x-y}-1\right)</td> | <td class="ntext" width="50%">\left(x-y+\displaystyle\frac{x^2}{y-x}\right) \left(\displaystyle\frac{y}{2x-y}-1\right)</td> | ||
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
<td class="ntext" width="50%">\displaystyle \frac{x}{x-2}+\displaystyle \frac{x}{x+3}-2</td> | <td class="ntext" width="50%">\displaystyle \frac{x}{x-2}+\displaystyle \frac{x}{x+3}-2</td> | ||
</tr> | </tr> | ||
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
<td class="ntext" width="50%">\displaystyle \frac{2a+b}{a^2-ab}-\frac{2}{a-b}</td> | <td class="ntext" width="50%">\displaystyle \frac{2a+b}{a^2-ab}-\frac{2}{a-b}</td> | ||
- | <td class="ntext">d)</td> | + | <td class="ntext">d) </td> |
<td class="ntext" width="50%">\displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}</td> | <td class="ntext" width="50%">\displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2}</td> | ||
</tr> | </tr> | ||
Rad 138: | Rad 138: | ||
</div> | </div> | ||
- | ==Övning 2.1:7== | + | '''Övning 2.1:7''' |
- | <div class="ovning"> | + | <div class="ovning" style="margin-top:-20px; margin-bottom:-5px;"> |
Förenkla följande bråkuttryck genom att skriva på gemensamt bråkstreck | Förenkla följande bråkuttryck genom att skriva på gemensamt bråkstreck | ||
- | <table width="100%" cellspacing="10px"> | + | <table width="100%"> |
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
<td class="ntext" width="33%">\displaystyle \frac{2}{x+3}-\frac{2}{x+5}</td> | <td class="ntext" width="33%">\displaystyle \frac{2}{x+3}-\frac{2}{x+5}</td> | ||
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
<td class="ntext" width="33%">x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2}</td> | <td class="ntext" width="33%">x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2}</td> | ||
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
<td class="ntext" width="33%">\displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}</td> | <td class="ntext" width="33%">\displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2}</td> | ||
</tr> | </tr> | ||
Rad 153: | Rad 153: | ||
</div> | </div> | ||
- | ==Övning 2.1:8== | + | '''Övning 2.1:8''' |
- | <div class="ovning"> | + | <div class="ovning" style="margin-top:-20px; margin-bottom:-5px;"> |
Förenkla följande bråkuttryck genom att skriva på gemensamt bråkstreck | Förenkla följande bråkuttryck genom att skriva på gemensamt bråkstreck | ||
- | <table width="100%" cellspacing="10px"> | + | <table width="100%"> |
<tr> | <tr> | ||
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
<td class="ntext" width="33%">\displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ }</td> | <td class="ntext" width="33%">\displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ }</td> | ||
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
<td class="ntext" width="33%">\displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}}</td> | <td class="ntext" width="33%">\displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}}</td> | ||
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
<td class="ntext" width="33%">\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}</td> | <td class="ntext" width="33%">\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}}</td> | ||
</tr> | </tr> | ||
Rad 169: | Rad 169: | ||
</table> | </table> | ||
</div> | </div> | ||
+ | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> |
Nuvarande version
Övning 2.1:1
Utveckla
a) | 3x(x-1) | b) | (1+x-x^2)xy | c) | -x^2(4-y^2) |
d) | x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right) | e) | (x-7)^2 | f) | (5+4y)^2 |
g) | (y^2-3x^3)^2 | h) | (5x^3+3x^5)^2 | ||
Övning 2.1:2
Utveckla och förenkla så långt som möjligt
a) | (x-4)(x-5)-3x(2x-3) | b) | (1-5x)(1+15x)-3(2-5x)(2+5x) |
c) | (3x+4)^2-(3x-2)(3x-8) | d) | (3x^2+2)(3x^2-2)(9x^4+4) |
e) | (a+b) ^2+(a-b) ^2 | ||
Övning 2.1:3
Faktorisera så långt som möjligt
a) | x^2-36 | b) | 5x^2-20 | c) | x^2+6x+9 |
d) | x^2-10x+25 | e) | 18x-2x^3 | f) | 16x^2+8x+1 |
Övning 2.1:4
Bestäm koefficienterna framför \,x\, och \,x^2\, när följande uttryck utvecklas
a) | (x+2)(3x^2-x+5) |
b) | (1+x+x^2+x^3)(2-x+x^2+x^4) |
c) | (x-x^3+x^5)(1+3x+5x^2)(2-7x^2-x^4) |
Övning 2.1:5
Förenkla så långt som möjligt
a) | \displaystyle \frac{1}{x-x^2}-\displaystyle \frac{1}{x} | b) | \displaystyle \frac{1}{y^2-2y}-\displaystyle \frac{2}{y^2-4} |
c) | \displaystyle \frac{(3x^2-12)(x^2-1)}{(x+1)(x+2)} | d) | \displaystyle \frac{(y^2+4y+4)(2y-4)}{(y^2+4)(y^2-4)} |
Övning 2.1:6
Förenkla så långt som möjligt
a) | \left(x-y+\displaystyle\frac{x^2}{y-x}\right) \left(\displaystyle\frac{y}{2x-y}-1\right) | b) | \displaystyle \frac{x}{x-2}+\displaystyle \frac{x}{x+3}-2 |
c) | \displaystyle \frac{2a+b}{a^2-ab}-\frac{2}{a-b} | d) | \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2} |
Övning 2.1:7
Förenkla följande bråkuttryck genom att skriva på gemensamt bråkstreck
a) | \displaystyle \frac{2}{x+3}-\frac{2}{x+5} | b) | x+\displaystyle \frac{1}{x-1}+\displaystyle \frac{1}{x^2} | c) | \displaystyle \frac{ax}{a+1}-\displaystyle \frac{ax^2}{(a+1)^2} |
Övning 2.1:8
Förenkla följande bråkuttryck genom att skriva på gemensamt bråkstreck
a) | \displaystyle \frac{\displaystyle\ \frac{x}{x+1}\ }{\ 3+x\ } | b) | \displaystyle \frac{\displaystyle \frac{3}{x}-\displaystyle \frac{1}{x}}{\displaystyle \frac{1}{x-3}} | c) | \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}} |