Övningar 3.4
Sommarmatte 1
(Skillnad mellan versioner)
Versionen från 16 juli 2007 kl. 08.10 (redigera) KTH.SE:u1zpa8nw (Diskussion | bidrag) (Ny sida: __NOTOC__ ==Övning 3.4:1== <div class="ovning"> Lös ekvationerna <table width="100%" cellspacing="10px"> <tr align="left"> <td class="ntext">a)</td> <td class="ntext" width="33%">...) ← Gå till föregående ändring |
Nuvarande version (17 juli 2007 kl. 09.43) (redigera) (ogör) KTH.SE:u1zpa8nw (Diskussion | bidrag) |
||
(3 mellanliggande versioner visas inte.) | |||
Rad 1: | Rad 1: | ||
__NOTOC__ | __NOTOC__ | ||
- | ==Övning 3.4:1== | + | '''Övning 3.4:1''' |
- | <div class="ovning"> | + | <div class="ovning" style="margin-top:-20px; margin-bottom:-5px;"> |
Lös ekvationerna | Lös ekvationerna | ||
- | <table width="100%" cellspacing="10px"> | + | <table width="100%"> |
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
<td class="ntext" width="33%">$e^x=13$</td> | <td class="ntext" width="33%">$e^x=13$</td> | ||
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
<td class="ntext" width="33%">$13e^x=2\cdot3^{-x}$</td> | <td class="ntext" width="33%">$13e^x=2\cdot3^{-x}$</td> | ||
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
<td class="ntext" width="33%">$3e^x=7\cdot2^x$</td> | <td class="ntext" width="33%">$3e^x=7\cdot2^x$</td> | ||
<tr><td height="5px"/></tr> | <tr><td height="5px"/></tr> | ||
Rad 16: | Rad 16: | ||
</div> | </div> | ||
- | ==Övning 3.4:2== | + | '''Övning 3.4:2''' |
- | <div class="ovning"> | + | <div class="ovning" style="margin-top:-20px; margin-bottom:-5px;"> |
Lös ekvationerna | Lös ekvationerna | ||
- | <table width="100%" cellspacing="10px"> | + | <table width="100%"> |
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
- | <td class="ntext" width="33%">$2^{\scriptstyle x^2-2}=1$</td> | + | <td class="ntext" width="33%">$2^{\scriptstyle x^{\scriptstyle2}-2}=1$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
<td class="ntext" width="33%">$e^{2x}+e^x=4$</td> | <td class="ntext" width="33%">$e^{2x}+e^x=4$</td> | ||
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
- | <td class="ntext" width="33%">$3e^{x^2}=2^x$</td> | + | <td class="ntext" width="33%">$3e^{x^{\scriptstyle2}}=2^x$</td> |
</tr> | </tr> | ||
<tr><td height="5px"/></tr> | <tr><td height="5px"/></tr> | ||
Rad 32: | Rad 32: | ||
</div> | </div> | ||
- | ==Övning 3.4:3== | + | '''Övning 3.4:3''' |
- | <div class="ovning"> | + | <div class="ovning" style="margin-top:-20px; margin-bottom:-5px;"> |
Lös ekvationerna | Lös ekvationerna | ||
- | <table width="100%" cellspacing="10px"> | + | <table width="100%"> |
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">a)</td> | + | <td class="ntext">a) </td> |
- | <td class="ntext" width="50%">$2^{-x^2}=2e^{2x}$</td> | + | <td class="ntext" width="50%">$2^{-x^{\scriptstyle2}}=2e^{2x}$</td> |
- | <td class="ntext">b)</td> | + | <td class="ntext">b) </td> |
<td class="ntext" width="50%">$\ln{(x^2+3x)}=\ln{(3x^2-2x)}$</td> | <td class="ntext" width="50%">$\ln{(x^2+3x)}=\ln{(3x^2-2x)}$</td> | ||
</tr> | </tr> | ||
<tr align="left"> | <tr align="left"> | ||
- | <td class="ntext">c)</td> | + | <td class="ntext">c) </td> |
<td class="ntext" width="50%">$\ln{x}+\ln{(x+4)}=\ln{(2x+3)}$</td> | <td class="ntext" width="50%">$\ln{x}+\ln{(x+4)}=\ln{(2x+3)}$</td> | ||
</tr> | </tr> | ||
Rad 49: | Rad 49: | ||
</table> | </table> | ||
</div> | </div> | ||
+ | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> |
Nuvarande version
Övning 3.4:1
Lös ekvationerna
a) | $e^x=13$ | b) | $13e^x=2\cdot3^{-x}$ | c) | $3e^x=7\cdot2^x$ |
Övning 3.4:2
Lös ekvationerna
a) | $2^{\scriptstyle x^{\scriptstyle2}-2}=1$ | b) | $e^{2x}+e^x=4$ | c) | $3e^{x^{\scriptstyle2}}=2^x$ |
Övning 3.4:3
Lös ekvationerna
a) | $2^{-x^{\scriptstyle2}}=2e^{2x}$ | b) | $\ln{(x^2+3x)}=\ln{(3x^2-2x)}$ |
c) | $\ln{x}+\ln{(x+4)}=\ln{(2x+3)}$ | ||